@article{ZNSL_2022_519_a10,
author = {V. E. Fedorov and L. V. Borel and N. D. Ivanova},
title = {Nonlinear inverse problems for a class of equations with {Riemann{\textendash}Liouville} derivatives},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {264--288},
year = {2022},
volume = {519},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/}
}
TY - JOUR AU - V. E. Fedorov AU - L. V. Borel AU - N. D. Ivanova TI - Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 264 EP - 288 VL - 519 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/ LA - ru ID - ZNSL_2022_519_a10 ER -
%0 Journal Article %A V. E. Fedorov %A L. V. Borel %A N. D. Ivanova %T Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 264-288 %V 519 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/ %G ru %F ZNSL_2022_519_a10
V. E. Fedorov; L. V. Borel; N. D. Ivanova. Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 264-288. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/
[1] A. M. Nakhushev, Drobnoe ischislenie i ego prilozheniya, Fizmatlit, M., 2003
[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam–Boston–Heidelberg, 2006 | MR
[3] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Springer, New York, 2011 | MR
[4] V. V. Uchaykin, Fractional Derivatives for Physicists and Engineers, Higher Education Press, Beijing, 2012 | MR
[5] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR
[6] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York–Basel, 2000 | MR
[7] Yu. Ya. Belov, Inverse problems for parabolic equations, VSP, Utrecht, 2002 | MR
[8] A. Favini, A. Lorenzi, Differential Equations. Inverse and Direct Problems, Chapman and Hall/CRC, New York, 2006 | MR
[9] S. I. Kabanikhin, O. I. Krivorotko, “Optimizatsionnye metody resheniya obratnykh zadach immunologii i epidemiologii”, Zh. vychislit. mat. i mat. fiziki, 60:4 (2020), 590–600
[10] D. G. Orlovsky, “Parameter determination in a differential equation of fractional order with Riemann. Liouville fractional derivative in a Hilbert space”, Zh. Sib. feder. un-ta. Ser. mat. i fiz., 8:1 (2015), 55–63 | MR
[11] V. E. Fedorov, N. D. Ivanova, “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Appl. Anal., 20:3 (2017), 706–721 | DOI | MR
[12] V. E. Fedorov, R. R. Nazhimov, “Inverse problems for a class of degenerate evolution equations with Riemann–Liouville derivative”, Fractional Calculus and Appl. Anal., 22:2 (2019), 271–286 | DOI | MR
[13] D. G. Orlovsky, “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, J. Physics: Conference Ser., 1205:1 (2019), 012042 | DOI | MR
[14] V. E. Fedorov, M. Kostich, “Zadacha identifikatsii dlya silno vyrozhdennykh evolyutsionnykh uravnenii s proizvodnoi Gerasimova–Kaputo”, Differents. uravneniya, 57:1 (2021), 100–113 | MR
[15] V. E. Fedorov, A. V. Nagumanova, “Lineinye obratnye zadachi dlya vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Gerasimova–Kaputo v sektorialnom sluchae”, Mat. zametki. Sev.-Vostoch. feder. un-ta, 27:2 (2020), 54–76
[16] V. E. Fedorov, A. V. Nagumanova, A. S. Avilovich, “A class of inverse problems for evolution equations with the Riemann–Liouville derivative in the sectorial case”, Math. Methods in the Appl. Sci., 44:15 (2021), 11961–11969 | DOI | MR
[17] V. E. Fedorov, A. V. Nagumanova, M. Kostić, “A class of inverse problems for fractional order degenerate evolution equations”, J. Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | MR
[18] A. B. Kostin, S. I. Piskarev, “Inverse source problem for the abstract fractional differential equation”, J. Inverse and Ill-Posed Problems, 29:2 (2021), 267–281 | DOI | MR
[19] M. M. Turov, V. E. Fedorov, B. T. Kien, “Linear inverse problems for multi-term equations with Rieman–Liouville derivative”, Izv. Irkut. gos. un-ta. Ser. Matematika, 38 (2021), 36–53 | MR
[20] D. Orlovsky, S. Piskarev, “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, J. Inverse and Ill-Posed Problems, 30:2 (2022), 221–237 | DOI | MR
[21] M. V. Plekhanova, E. M. Izhberdeeva, “O korrektnosti obratnoi zadachi dlya vyrozhdennogo evolyutsionnogo uravneniya s drobnoi proizvodnoi Dzhrbashyana–Nersesyana”, Itogi nauki i tekhniki. Ser. sovrem. matematika i ee pril. Temat. obzory, 213, 2022, 80–88
[22] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2001 | MR
[23] V. E. Fedorov, A. S. Avilovich, “Zadacha tipa Koshi dlya vyrozhdennogo uravneniya s proizvodnoi Rimana–Liuvillya v sektorialnom sluchae”, Sib. mat. zhurn., 60:2 (2019), 461–477 | MR
[24] A. S. Avilovich, D. M. Gordievskikh, V. E. Fedorov, “Voprosy odnoznachnoi razreshimosti i priblizhennoi upravlyaemosti dlya lineinykh uravnenii drobnogo poryadka s gelderovoi pravoi chastyu”, Chelyab. fiz.-mat. zhurn., 5:1 (2020), 5–21 | MR
[25] V. E. Fedorov, A. S. Avilovich, “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Variables and Elliptic Equations, 66:6–7 (2021), 1108–1121 | DOI | MR
[26] V. E. Fedorov, M. M. Turov, “Defekt zadachi tipa Koshi dlya lineinykh uravnenii s neskolkimi proizvodnymi Rimana–Liuvillya”, Sib. mat. zhurn., 62:5 (2021), 1143–1162
[27] V. E. Fedorov, W.-S. Du, M. M. Turov, “On the unique solvability of incomplete Cauchy type problems for a class of multi-term equations with the Riemann–Liouville derivatives”, Symmetry, 14:1 (2022), 75 | DOI | MR
[28] V. E. Fedorov, M. M. Turov, B. T. Kien, “A class of quasilinear equations with Riemann–Liouville derivatives and bounded operators”, Axioms, 11 (2022), 96 | DOI | MR
[29] V. E. Fedorov, E. A. Romanova, A. Debush, “3Analiticheskie v sektore razreshayuschie semeistva operatorov vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Sib. zhurn. chistoi i priklad. matematiki, 16:2 (2016), 93–107