Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 264-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The issues of local unique solvability in the sense of generalized and smooth solutions of nonlinear inverse problems for equations in Banach spaces with several fractional Riemann–Liouville derivatives and Riemann–Liouville integrals are investigated. The operator in the linear part is assumed to generate the analytic in the sector resolving family of operators of the corresponding linear equation, the unknown coefficients in the equation depend on time. The conditions of unique solvability of the inverse problem in Banach space are used in the study of a class of initial boundary value problems for a loaded fractional diffusion equation with several Riemann–Liouville derivatives and Riemann–Liouville integrals in time and unknown coefficients, with integral overdefinition conditions.
@article{ZNSL_2022_519_a10,
     author = {V. E. Fedorov and L. V. Borel and N. D. Ivanova},
     title = {Nonlinear inverse problems for a class of equations with {Riemann{\textendash}Liouville} derivatives},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {264--288},
     year = {2022},
     volume = {519},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - L. V. Borel
AU  - N. D. Ivanova
TI  - Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 264
EP  - 288
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/
LA  - ru
ID  - ZNSL_2022_519_a10
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A L. V. Borel
%A N. D. Ivanova
%T Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 264-288
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/
%G ru
%F ZNSL_2022_519_a10
V. E. Fedorov; L. V. Borel; N. D. Ivanova. Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 264-288. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a10/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego prilozheniya, Fizmatlit, M., 2003

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam–Boston–Heidelberg, 2006 | MR

[3] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Springer, New York, 2011 | MR

[4] V. V. Uchaykin, Fractional Derivatives for Physicists and Engineers, Higher Education Press, Beijing, 2012 | MR

[5] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR

[6] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York–Basel, 2000 | MR

[7] Yu. Ya. Belov, Inverse problems for parabolic equations, VSP, Utrecht, 2002 | MR

[8] A. Favini, A. Lorenzi, Differential Equations. Inverse and Direct Problems, Chapman and Hall/CRC, New York, 2006 | MR

[9] S. I. Kabanikhin, O. I. Krivorotko, “Optimizatsionnye metody resheniya obratnykh zadach immunologii i epidemiologii”, Zh. vychislit. mat. i mat. fiziki, 60:4 (2020), 590–600

[10] D. G. Orlovsky, “Parameter determination in a differential equation of fractional order with Riemann. Liouville fractional derivative in a Hilbert space”, Zh. Sib. feder. un-ta. Ser. mat. i fiz., 8:1 (2015), 55–63 | MR

[11] V. E. Fedorov, N. D. Ivanova, “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Appl. Anal., 20:3 (2017), 706–721 | DOI | MR

[12] V. E. Fedorov, R. R. Nazhimov, “Inverse problems for a class of degenerate evolution equations with Riemann–Liouville derivative”, Fractional Calculus and Appl. Anal., 22:2 (2019), 271–286 | DOI | MR

[13] D. G. Orlovsky, “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, J. Physics: Conference Ser., 1205:1 (2019), 012042 | DOI | MR

[14] V. E. Fedorov, M. Kostich, “Zadacha identifikatsii dlya silno vyrozhdennykh evolyutsionnykh uravnenii s proizvodnoi Gerasimova–Kaputo”, Differents. uravneniya, 57:1 (2021), 100–113 | MR

[15] V. E. Fedorov, A. V. Nagumanova, “Lineinye obratnye zadachi dlya vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Gerasimova–Kaputo v sektorialnom sluchae”, Mat. zametki. Sev.-Vostoch. feder. un-ta, 27:2 (2020), 54–76

[16] V. E. Fedorov, A. V. Nagumanova, A. S. Avilovich, “A class of inverse problems for evolution equations with the Riemann–Liouville derivative in the sectorial case”, Math. Methods in the Appl. Sci., 44:15 (2021), 11961–11969 | DOI | MR

[17] V. E. Fedorov, A. V. Nagumanova, M. Kostić, “A class of inverse problems for fractional order degenerate evolution equations”, J. Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | MR

[18] A. B. Kostin, S. I. Piskarev, “Inverse source problem for the abstract fractional differential equation”, J. Inverse and Ill-Posed Problems, 29:2 (2021), 267–281 | DOI | MR

[19] M. M. Turov, V. E. Fedorov, B. T. Kien, “Linear inverse problems for multi-term equations with Rieman–Liouville derivative”, Izv. Irkut. gos. un-ta. Ser. Matematika, 38 (2021), 36–53 | MR

[20] D. Orlovsky, S. Piskarev, “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, J. Inverse and Ill-Posed Problems, 30:2 (2022), 221–237 | DOI | MR

[21] M. V. Plekhanova, E. M. Izhberdeeva, “O korrektnosti obratnoi zadachi dlya vyrozhdennogo evolyutsionnogo uravneniya s drobnoi proizvodnoi Dzhrbashyana–Nersesyana”, Itogi nauki i tekhniki. Ser. sovrem. matematika i ee pril. Temat. obzory, 213, 2022, 80–88

[22] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2001 | MR

[23] V. E. Fedorov, A. S. Avilovich, “Zadacha tipa Koshi dlya vyrozhdennogo uravneniya s proizvodnoi Rimana–Liuvillya v sektorialnom sluchae”, Sib. mat. zhurn., 60:2 (2019), 461–477 | MR

[24] A. S. Avilovich, D. M. Gordievskikh, V. E. Fedorov, “Voprosy odnoznachnoi razreshimosti i priblizhennoi upravlyaemosti dlya lineinykh uravnenii drobnogo poryadka s gelderovoi pravoi chastyu”, Chelyab. fiz.-mat. zhurn., 5:1 (2020), 5–21 | MR

[25] V. E. Fedorov, A. S. Avilovich, “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Variables and Elliptic Equations, 66:6–7 (2021), 1108–1121 | DOI | MR

[26] V. E. Fedorov, M. M. Turov, “Defekt zadachi tipa Koshi dlya lineinykh uravnenii s neskolkimi proizvodnymi Rimana–Liuvillya”, Sib. mat. zhurn., 62:5 (2021), 1143–1162

[27] V. E. Fedorov, W.-S. Du, M. M. Turov, “On the unique solvability of incomplete Cauchy type problems for a class of multi-term equations with the Riemann–Liouville derivatives”, Symmetry, 14:1 (2022), 75 | DOI | MR

[28] V. E. Fedorov, M. M. Turov, B. T. Kien, “A class of quasilinear equations with Riemann–Liouville derivatives and bounded operators”, Axioms, 11 (2022), 96 | DOI | MR

[29] V. E. Fedorov, E. A. Romanova, A. Debush, “3Analiticheskie v sektore razreshayuschie semeistva operatorov vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Sib. zhurn. chistoi i priklad. matematiki, 16:2 (2016), 93–107