On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 10-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-dimensional Navier–Stokes system of equations in a porous medium with an anisotropic variable viscosity with rapidly oscillating terms in the equations and in the boundary conditions, is considered. It is proved that the trajectory attractors of this system tend in a certain weak topology to the trajectory attractors of the homogenized Navier–Stokes system of equations with an additional potential.
@article{ZNSL_2022_519_a1,
     author = {K. A. Bekmaganbetov and A. M. Toleubai and G. A. Chechkin},
     title = {On attractors of {2D} {Navier{\textendash}Stockes} system in a medium with anisotropic variable viscosity and periodic obstacles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {10--34},
     year = {2022},
     volume = {519},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/}
}
TY  - JOUR
AU  - K. A. Bekmaganbetov
AU  - A. M. Toleubai
AU  - G. A. Chechkin
TI  - On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 10
EP  - 34
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/
LA  - ru
ID  - ZNSL_2022_519_a1
ER  - 
%0 Journal Article
%A K. A. Bekmaganbetov
%A A. M. Toleubai
%A G. A. Chechkin
%T On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 10-34
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/
%G ru
%F ZNSL_2022_519_a1
K. A. Bekmaganbetov; A. M. Toleubai; G. A. Chechkin. On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 10-34. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/

[1] V. A. Marchenko, E. Ya. Khruslov, Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[2] D. Cioranescu, F. Murat, “Un terme étrange venu d'ailleurs I; II”, Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, v. II, III, Research Notes in Mathematics, 60 70, eds. H. Berzis, J.L. Lions, Pitman, London, 1982, 98–138, 154–178 | MR

[3] D. Cioranescu, J. Saint Jean Paulin, “Homogenization in open sets with holes”, J. Math. Anal. Appl., 71 (1979), 590–607 | DOI | MR

[4] D. Cioranescu, P. Donato, “On a Robin Problem in Perforated Domains”, Homogenization and Applications to Material Sciences, GAKUTO International Series. Mathematical Sciences and Applications, 9, eds. D. Cioranescu, A. Damlamian, P. Donato, Gakkōtosho, Tokyo, 1997, 123–136 | MR

[5] C. Conca, P. Donato, “Non-homogeneous Neumann problems in domains with small holes”, Modélisation Mathématique et Analyse Numérique (M$^2$AN), 22:4 (1988), 561–607 | MR

[6] A. G. Belyaev, A. L. Pyatnitskii, G. A. Chechkin, “Asimptoticheskoe povedenie resheniya kraevoi zadachi v perforirovannoi oblasti s ostsilliruyuschei granitsei”, Sib. matem. zhurn., 39:4 (1998), 730–754 | MR

[7] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993

[8] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North–Holland, Amsterdam, 1992 | MR

[9] A. L. Pyatnitskii, G. A. Chechkin, A. S. Shamaev, Usrednenie. Metody i prilozheniya. Belaya seriya v matematike i fizike, v. 3, Izd-vo “Tamara Rozhkovskaya”, Novosibirsk, 2007 | MR

[10] V. A. Marchenko, E. Ya. Khruslov, Homogenization of partial differential equations, Birkhäuser, Boston (MA), 2006 | MR

[11] A. G. Belyaev, A. L. Pyatnitskii, G. A. Chechkin, “Usrednenie v perforirovannoi oblasti s ostsilliruyuschim tretim kraevym usloviem”, Matem. sb., 192 (2001), 3–20

[12] G. A. Chechkin, A. L. Piatnitski, “Homogenization of Boundary–Value Problem in a Locally Periodic Perforated Domain”, Applicable Analysis, 71:1-4 (1999), 215–235 | DOI | MR

[13] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, “Attractors and a “strange term” in homogenized equation”, C R Mécanique, 348:5 (2020), 351–359 | MR

[14] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, “Strong Convergence of Trajectory Attractors for Reactio,n–Diffusion Systems with Random Rapidly Oscillating Terms”, Communications on Pure and Applied Analysis (CPAA), 19:5 (2020), 2419–2443 | DOI | MR

[15] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, ““Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain”, Chaos, Solitons Fractals, 140 (2020), 110208 | DOI | MR

[16] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR

[17] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc., Providence (RI), 2002 | MR

[18] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, 68, Springer–Verlag, New York (NY), 1988 | MR

[19] V. V. Chepyzhov, M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems”, ESAIM Control Optim. Calc. Var., 8 (2002), 467–487 | DOI | MR

[20] V. V. Chepyzhov, M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor”, J. Dynam. Diff. Eq., 19:3 (2007), 655–684 | DOI | MR

[21] M. I. Vishik, V. V. Chepyzhov, “Usrednenie traektornykh attraktorov evolyutsionnykh uravnenii s bystro ostsilliruyuschimi chlenami”, Matem. sb., 192 (2001), 13–50

[22] K. A. Bekmaganbetov, A. M. Toleubai, G. A. Chechkin, “Ob attraktorakh sistemy uravnenii Nave–Stoksa v dvumernoi poristoi srede”, Problemy matematicheskogo analiza, 115 (2022), 15–28

[23] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl., 76:10 (1997), 913–964 | DOI | MR

[24] F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New York (NY), 2013 | DOI | MR

[25] J.-L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR

[26] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Top. Meth. Nonlin. Anal. J. Julius Schauder Center, 7:1 (1996), 49–76 | MR