@article{ZNSL_2022_519_a1,
author = {K. A. Bekmaganbetov and A. M. Toleubai and G. A. Chechkin},
title = {On attractors of {2D} {Navier{\textendash}Stockes} system in a medium with anisotropic variable viscosity and periodic obstacles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {10--34},
year = {2022},
volume = {519},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/}
}
TY - JOUR AU - K. A. Bekmaganbetov AU - A. M. Toleubai AU - G. A. Chechkin TI - On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 10 EP - 34 VL - 519 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/ LA - ru ID - ZNSL_2022_519_a1 ER -
%0 Journal Article %A K. A. Bekmaganbetov %A A. M. Toleubai %A G. A. Chechkin %T On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 10-34 %V 519 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/ %G ru %F ZNSL_2022_519_a1
K. A. Bekmaganbetov; A. M. Toleubai; G. A. Chechkin. On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 10-34. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/
[1] V. A. Marchenko, E. Ya. Khruslov, Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR
[2] D. Cioranescu, F. Murat, “Un terme étrange venu d'ailleurs I; II”, Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, v. II, III, Research Notes in Mathematics, 60 70, eds. H. Berzis, J.L. Lions, Pitman, London, 1982, 98–138, 154–178 | MR
[3] D. Cioranescu, J. Saint Jean Paulin, “Homogenization in open sets with holes”, J. Math. Anal. Appl., 71 (1979), 590–607 | DOI | MR
[4] D. Cioranescu, P. Donato, “On a Robin Problem in Perforated Domains”, Homogenization and Applications to Material Sciences, GAKUTO International Series. Mathematical Sciences and Applications, 9, eds. D. Cioranescu, A. Damlamian, P. Donato, Gakkōtosho, Tokyo, 1997, 123–136 | MR
[5] C. Conca, P. Donato, “Non-homogeneous Neumann problems in domains with small holes”, Modélisation Mathématique et Analyse Numérique (M$^2$AN), 22:4 (1988), 561–607 | MR
[6] A. G. Belyaev, A. L. Pyatnitskii, G. A. Chechkin, “Asimptoticheskoe povedenie resheniya kraevoi zadachi v perforirovannoi oblasti s ostsilliruyuschei granitsei”, Sib. matem. zhurn., 39:4 (1998), 730–754 | MR
[7] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993
[8] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North–Holland, Amsterdam, 1992 | MR
[9] A. L. Pyatnitskii, G. A. Chechkin, A. S. Shamaev, Usrednenie. Metody i prilozheniya. Belaya seriya v matematike i fizike, v. 3, Izd-vo “Tamara Rozhkovskaya”, Novosibirsk, 2007 | MR
[10] V. A. Marchenko, E. Ya. Khruslov, Homogenization of partial differential equations, Birkhäuser, Boston (MA), 2006 | MR
[11] A. G. Belyaev, A. L. Pyatnitskii, G. A. Chechkin, “Usrednenie v perforirovannoi oblasti s ostsilliruyuschim tretim kraevym usloviem”, Matem. sb., 192 (2001), 3–20
[12] G. A. Chechkin, A. L. Piatnitski, “Homogenization of Boundary–Value Problem in a Locally Periodic Perforated Domain”, Applicable Analysis, 71:1-4 (1999), 215–235 | DOI | MR
[13] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, “Attractors and a “strange term” in homogenized equation”, C R Mécanique, 348:5 (2020), 351–359 | MR
[14] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, “Strong Convergence of Trajectory Attractors for Reactio,n–Diffusion Systems with Random Rapidly Oscillating Terms”, Communications on Pure and Applied Analysis (CPAA), 19:5 (2020), 2419–2443 | DOI | MR
[15] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, ““Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain”, Chaos, Solitons Fractals, 140 (2020), 110208 | DOI | MR
[16] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR
[17] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc., Providence (RI), 2002 | MR
[18] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, 68, Springer–Verlag, New York (NY), 1988 | MR
[19] V. V. Chepyzhov, M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems”, ESAIM Control Optim. Calc. Var., 8 (2002), 467–487 | DOI | MR
[20] V. V. Chepyzhov, M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor”, J. Dynam. Diff. Eq., 19:3 (2007), 655–684 | DOI | MR
[21] M. I. Vishik, V. V. Chepyzhov, “Usrednenie traektornykh attraktorov evolyutsionnykh uravnenii s bystro ostsilliruyuschimi chlenami”, Matem. sb., 192 (2001), 13–50
[22] K. A. Bekmaganbetov, A. M. Toleubai, G. A. Chechkin, “Ob attraktorakh sistemy uravnenii Nave–Stoksa v dvumernoi poristoi srede”, Problemy matematicheskogo analiza, 115 (2022), 15–28
[23] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl., 76:10 (1997), 913–964 | DOI | MR
[24] F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New York (NY), 2013 | DOI | MR
[25] J.-L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR
[26] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Top. Meth. Nonlin. Anal. J. Julius Schauder Center, 7:1 (1996), 49–76 | MR