On attractors of 2D Navier--Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 10-34

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional Navier–Stokes system of equations in a porous medium with an anisotropic variable viscosity with rapidly oscillating terms in the equations and in the boundary conditions, is considered. It is proved that the trajectory attractors of this system tend in a certain weak topology to the trajectory attractors of the homogenized Navier–Stokes system of equations with an additional potential.
@article{ZNSL_2022_519_a1,
     author = {K. A. Bekmaganbetov and A. M. Toleubai and G. A. Chechkin},
     title = {On attractors of {2D} {Navier--Stockes} system in a medium with anisotropic variable viscosity and periodic obstacles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {10--34},
     publisher = {mathdoc},
     volume = {519},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/}
}
TY  - JOUR
AU  - K. A. Bekmaganbetov
AU  - A. M. Toleubai
AU  - G. A. Chechkin
TI  - On attractors of 2D Navier--Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 10
EP  - 34
VL  - 519
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/
LA  - ru
ID  - ZNSL_2022_519_a1
ER  - 
%0 Journal Article
%A K. A. Bekmaganbetov
%A A. M. Toleubai
%A G. A. Chechkin
%T On attractors of 2D Navier--Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 10-34
%V 519
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/
%G ru
%F ZNSL_2022_519_a1
K. A. Bekmaganbetov; A. M. Toleubai; G. A. Chechkin. On attractors of 2D Navier--Stockes system in a medium with anisotropic variable viscosity and periodic obstacles. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 10-34. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a1/