Injective proofs of log concavity for some combinatorial sequences
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 173-191

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a new combinatorial interpretation of the number of RNA secondary structures and some other Catalan-like numbers. On the basis of this interpretation a combinatorial proof of their logarithmic convexity is given.
@article{ZNSL_2022_518_a5,
     author = {A. I. Khrabrov},
     title = {Injective proofs of log concavity for some combinatorial sequences},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--191},
     publisher = {mathdoc},
     volume = {518},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/}
}
TY  - JOUR
AU  - A. I. Khrabrov
TI  - Injective proofs of log concavity for some combinatorial sequences
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 173
EP  - 191
VL  - 518
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/
LA  - ru
ID  - ZNSL_2022_518_a5
ER  - 
%0 Journal Article
%A A. I. Khrabrov
%T Injective proofs of log concavity for some combinatorial sequences
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 173-191
%V 518
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/
%G ru
%F ZNSL_2022_518_a5
A. I. Khrabrov. Injective proofs of log concavity for some combinatorial sequences. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 173-191. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/