Injective proofs of log concavity for some combinatorial sequences
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 173-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper provides a new combinatorial interpretation of the number of RNA secondary structures and some other Catalan-like numbers. On the basis of this interpretation a combinatorial proof of their logarithmic convexity is given.
@article{ZNSL_2022_518_a5,
     author = {A. I. Khrabrov},
     title = {Injective proofs of log concavity for some combinatorial sequences},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--191},
     year = {2022},
     volume = {518},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/}
}
TY  - JOUR
AU  - A. I. Khrabrov
TI  - Injective proofs of log concavity for some combinatorial sequences
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 173
EP  - 191
VL  - 518
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/
LA  - ru
ID  - ZNSL_2022_518_a5
ER  - 
%0 Journal Article
%A A. I. Khrabrov
%T Injective proofs of log concavity for some combinatorial sequences
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 173-191
%V 518
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/
%G ru
%F ZNSL_2022_518_a5
A. I. Khrabrov. Injective proofs of log concavity for some combinatorial sequences. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 173-191. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a5/

[1] K. Kokhas, A. Khrabrov, “Tochki na pryamykh, shnurki i dominoshki”, Matem. prosveschenie, 2015, 139–163

[2] M. Aigner, “Motzkin numbers”, European J. Combin., 19 (1998), 663–675

[3] M. Aigner, “Catalan-like numbers and determinants”, J. Combinatorial Theory, Ser. A, 87 (1999), 33–51

[4] M. Aigner, “Enumeration via ballot numbers”, Discr. Math., 308 (2008), 2544–2563

[5] E. A. Bender, E. R. Canfield, “Log-concavity and related properties of the cycle index polynomials”, J. Combinatorial Theory, Ser. A, 74 (1996), 57–70

[6] M. Bóna, A. Ehrenborg, “A combinatorial proof of the $\log$-concavity of the numbers of permutations with $k$ runs”, J. Combinatorial Theory, Ser. A, 90 (2000), 293–303

[7] P. Brändén, “Unimodality, $\log$-concavity, real-rootedness and beyond”, Handbook of enumerative combinatorics, CRC Press, 2015, 437–483

[8] F. Brenti, “Log-concavity and combinatorial properties of Fibonacci lattices”, European J. Combin., 12 (1991), 459–476

[9] F. Brenti, “Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update”, Contemp. Math., 178, 1993, 71–89

[10] A. C. Bura, Qijun He, C. M. Reidys, “Loop homology of bi-secondary structures”, Discrete Math., 344:6 (2021), 112371

[11] D. Callan, Notes on Motzkin and Schröder numbers, , 2000 http://www.stat.wisc.edu/c̃allan/notes/

[12] E. R. Canfield, “Engel's inequality for Bell numbers”, J. Combin. Theory Ser. A, 72:1 (1995), 184–187

[13] P. Clote, E. Kranakis, D. Krizanc, “Asymptotic number of hairpins of saturated RNA secondary structures”, Bull. Math. Biol., 75 (2013), 2410–2430

[14] T. Došlić, D. Veljan, “Logarithmic behavior of some combinatorial sequences”, Discr. Math., 308 (2008), 2182–2212

[15] T. Došlić, D. Svrtan, D. Veljan, “Enumerative aspects of secondary structures”, Discr. Math., 285 (2004), 67–82

[16] T. Došlić, “Seven (lattice) paths to $\log$-convexity”, Acta Appl. Math., 110 (2010), 1373–1392

[17] K. Engel, “On the average rank of an element in a filter of the partition lattice”, J. Combin. Theory, Ser. A, 64 (1994), 67–78

[18] H. Han, S. Seo, “Combinatorial proofs of inverse relations and $\log$-concavity for Bessel numbers”, Europ. J. Combin., 29 (2008), 1544–1554

[19] L. H. Harper, “Stirling behavior is asymptotically normal”, Ann. Math. Statist., 38 (1967), 410–414

[20] I. L. Hofacker, P. Schuster, P. F. Stadler, “Combinatorics of RNA secondary structures”, Discrete Appl. Math., 88 (1998), 207–237

[21] C. Krattenthaler, “Combinatorial proof of the log-concavity of the sequence of matching numbers”, J. Combinatorial Theory, Ser. A, 74 (1996), 351–354

[22] D. C. Kurtz, “A note on concavity properties of triangular arrays of numbers”, J. Combinatorial Theory, Ser. A, 13 (1972), 135–139

[23] E. H. Lieb, “Concavity properties and a generating function for Stirling numbers”, J. Combinatorial Theory, 5 (1968), 203–206

[24] L. L. Liu, Y. Wang, “On the $\log$-convexity of combinatorial sequences”, Adv. Appl. Math., 39 (2007), 453–476

[25] I. Mező, Combinatorics and number theory of counting sequences, CRC Press, 2020

[26] B. E. Sagan, “Inductive and injective proofs of $\log$-concavity results”, Discrete Math., 68 (1988), 281–292

[27] A. Sapounakis, I. Tasoulas, P. Tsikouras, “Counting strings in Dyck paths”, Discrete Math., 307 (2007), 2909–2924

[28] P. R. Stein, M. S. Waterman, “On some new sequences generalizing the Catalan and Motzkin numbers”, Discrete Math., 26 (1979), 261–272

[29] R. P. Stanley, “Log-concave and unimodal sequences in algebra, combinatorics, and geometry”, Ann. New York Acad. Sci., 576 (1989), 500–535

[30] H. Sun, Y. Wang, “A combinatorial proof of the $\log$-convexity of Catalan-like numbers”, J. Integer Sequences, 17 (2014), 14.5.2

[31] Y. Wang, Zh.-H. Zhang, “Log-convexity of Aigner–Catalan–Riordan numbers”, Linear Alg. Appl., 463 (2014), 45–55

[32] M. S. Waterman, “Secondary structures of single stranded nucleic acids”, Studies on Foundations and Combinatorics. Advances in Mathematics Supplementary Studies, v. I, Academic Press, New York, 1978, 167–212

[33] B. X. Zhu, “Log-convexity and strong q-$\log$-convexity for some triangular arrays”, Adv. Appl. Math., 50 (2013), 595–606

[34] B. X. Zhu, “Some positivities in certain triangular arrays”, Proc. Amer. Math. Soc., 142:9 (2014), 2943–2952

[35] The online Encyclopedia of integer sequences, http://oeis.org/