@article{ZNSL_2022_518_a3,
author = {D. V. Karpov},
title = {On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--151},
year = {2022},
volume = {518},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/}
}
TY - JOUR AU - D. V. Karpov TI - On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 124 EP - 151 VL - 518 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/ LA - ru ID - ZNSL_2022_518_a3 ER -
D. V. Karpov. On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 124-151. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/
[1] P. J. Kelly, “A congruence theorem for trees”, Pacific J. Math., 7 (1957), 961–968
[2] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224
[3] S. M. Ulam, A collection of mathematical problems, Wiley, New York, 1960
[4] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966
[5] J. A. Bondy, On Ulam's conjecture for separable graphs, Univ. Toronto Press, Toronto, 1966
[6] Y. Yongzhi, “The reconstruction conjecture is true if all 2-connected graphs are reconstructible”, J. Graph Theory, 12 (1988), 237–243
[7] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106
[8] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93
[9] D. V. Karpov, “Razdelyayuschie mnozhestva v k-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60
[10] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105
[11] D. V. Karpov, “Minimalnye dvusvyaznye grafy”, Zap. nauchn. semin. POMI, 417, 2013, 106–127