On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 124-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Recall that the deck of a graph $G$ is the collection of subgraphs $G-v$ for all vertices $v$ of the graph $G$. Let $G$ be a of a $2$-connected graph having a $2$-vertex set dividing this graph into at least $3$ parts. We prove that $G$ is reconstructible by its deck. The proof contains an algorithm of the reconstruction.
@article{ZNSL_2022_518_a3,
     author = {D. V. Karpov},
     title = {On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--151},
     year = {2022},
     volume = {518},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 124
EP  - 151
VL  - 518
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/
LA  - ru
ID  - ZNSL_2022_518_a3
ER  - 
%0 Journal Article
%A D. V. Karpov
%T On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 124-151
%V 518
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/
%G ru
%F ZNSL_2022_518_a3
D. V. Karpov. On the reconstruction of graphs of connectivity $2$ having a $2$-vertex set dividing this graph into at least $3$ parts. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 124-151. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a3/

[1] P. J. Kelly, “A congruence theorem for trees”, Pacific J. Math., 7 (1957), 961–968

[2] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224

[3] S. M. Ulam, A collection of mathematical problems, Wiley, New York, 1960

[4] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966

[5] J. A. Bondy, On Ulam's conjecture for separable graphs, Univ. Toronto Press, Toronto, 1966

[6] Y. Yongzhi, “The reconstruction conjecture is true if all 2-connected graphs are reconstructible”, J. Graph Theory, 12 (1988), 237–243

[7] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106

[8] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93

[9] D. V. Karpov, “Razdelyayuschie mnozhestva v k-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60

[10] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[11] D. V. Karpov, “Minimalnye dvusvyaznye grafy”, Zap. nauchn. semin. POMI, 417, 2013, 106–127