@article{ZNSL_2022_518_a2,
author = {N. A. Karol},
title = {Restriction on minimum degree in the contractible sets problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--123},
year = {2022},
volume = {518},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a2/}
}
N. A. Karol. Restriction on minimum degree in the contractible sets problem. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 114-123. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a2/
[1] N. Karol, Contractible 6-vertex sets, manuscript
[2] D. V. Karpov, “Large contractible subgraphs of a $3$-connected graph”, Discussiones Mathematicae Graph Theory, 41 (2021), 83–101 | DOI
[3] D. V. Karpov, “Minimal biconnected graphs”, J. Math. Sci., 204 (2015), 244–257
[4] M. Kriesell, “Contractible subgraphs in $3$-connected graphs”, J. Comb. Theory Ser. B, 80 (2000), 32–48
[5] W. Mader, “High connectivity keeping sets in $n$-connected graphs”, Combinatorica, 24:3 (2004), 441–458
[6] W. Mader, “On vertices of degree $n$ in minimally $n$-connected graphs and digraphs”, Combinatorics, Paul Erdös is Eighty, 2 (1996), 423–449
[7] W. McCuaig, K. Ota, “Contractible triples in $3$-connected graphs”, J. Comb. Theory Ser. B, 60 (1994), 308–314
[8] W. T. Tutte, “A theory of $3$-connected graphs”, Konik. Nederl. Akad. van Wet., Proc., 64 (1961), 441–455
[9] N. Y. Vlasova, “Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices”, Zap. Nauchn. Semin. POMI, 518, 2022, 5–93