On the chromatic numbers of $3$-dimensional slices
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 94-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that for an arbitrary $\varepsilon > 0$ holds $$ \chi (\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10, $$ where $\chi(M)$ stands for the chromatic number of an (infinite) graph with the vertex set $M$ and the edge set consists of pairs of points at the distance $1$ apart.
@article{ZNSL_2022_518_a1,
     author = {V. A. Voronov and A. Ya. Kanel-Belov and G. A. Strukov and D. D. Cherkashin},
     title = {On the chromatic numbers of $3$-dimensional slices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--113},
     year = {2022},
     volume = {518},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a1/}
}
TY  - JOUR
AU  - V. A. Voronov
AU  - A. Ya. Kanel-Belov
AU  - G. A. Strukov
AU  - D. D. Cherkashin
TI  - On the chromatic numbers of $3$-dimensional slices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 94
EP  - 113
VL  - 518
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a1/
LA  - ru
ID  - ZNSL_2022_518_a1
ER  - 
%0 Journal Article
%A V. A. Voronov
%A A. Ya. Kanel-Belov
%A G. A. Strukov
%A D. D. Cherkashin
%T On the chromatic numbers of $3$-dimensional slices
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 94-113
%V 518
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a1/
%G ru
%F ZNSL_2022_518_a1
V. A. Voronov; A. Ya. Kanel-Belov; G. A. Strukov; D. D. Cherkashin. On the chromatic numbers of $3$-dimensional slices. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 94-113. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a1/

[1] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126

[2] D. Coulson, “A 15-colouring of 3-space omitting distance one”, Discrete Mathematics, 256:1 (2002), 83–90

[3] J. D. Currie, R. B. Eggleton, Chromatic properties of the Euclidean plane, 2015, arXiv: 1509.03667

[4] A. D. N. J. de Grey, “The chromatic number of the plane is at least 5”, Geombinatorics, 25:1 (2018), 18–31

[5] G. Exoo, “$\varepsilon$-unit distance graphs”, Discrete Computational Geometry, 33:1 (2005), 117–123

[6] G. Exoo, D. Ismailescu, “The chromatic number of the plane is at least 5: A new proof”, Discrete Computational Geometry, 2018, 1–11

[7] M. J. H. Heule, “Computing small unit-distance graphs with chromatic number 5”, Geombinatorics, 28:1 (2018), 32–50

[8] A. Kanel-Belov, V. Voronov, D. Cherkashin, “On the chromatic number of an infinitesimal plane layer”, St. Petersburg Math. J., 29:5 (2018), 761–775

[9] D. G. Larman, A. C. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19:01 (1972), 1–24

[10] O. Nechushtan, “On the space chromatic number”, Discrete Math., 256:1 (2002), 499–507

[11] J. Parts, “The chromatic number of the plane is at least 5 – a human-verifiable proof”, Geombinatorics, 30:2 (2020), 77–102

[12] J. Parts, “Graph minimization, focusing on the example of 5-chromatic unit-distance graphs in the plane”, Geombinatorics, 29:4 (2020), 137–166

[13] R. Radoičić, G. Tóth, “Note on the chromatic number of the space”, Discrete and Computational Geometry, Algorithms and Combinatorics book series, 25, Springer, 2003, 695–698

[14] V. A. Voronov, A. M. Neopryatnaya, E. A. Dergachev, “Constructing 5-chromatic unit distance graphs embedded in the Euclidean plane and two-dimensional spheres”, Discrete Math., 345:12 (2022), 113106

[15] A. Ya. Kanel-Belov, V. A. Voronov, D. D. Cherkashin, “O khromaticheskom chisle ploskosti”, Algebra analiz, 29:5 (2017), 68–89