Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 5-93

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $H$ of the set of vertices of a $3$-connected finite graph $G$ is called contractible if $G(H)$ is connected and $G - H$ is $2$-connected. We prove that every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices. And there is a $3$-connected graph on $12$ vertices that does not contain a contractible set on $5$ vertices.
@article{ZNSL_2022_518_a0,
     author = {N. Yu. Vlasova},
     title = {Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--93},
     publisher = {mathdoc},
     volume = {518},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/}
}
TY  - JOUR
AU  - N. Yu. Vlasova
TI  - Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 5
EP  - 93
VL  - 518
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/
LA  - ru
ID  - ZNSL_2022_518_a0
ER  - 
%0 Journal Article
%A N. Yu. Vlasova
%T Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 5-93
%V 518
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/
%G ru
%F ZNSL_2022_518_a0
N. Yu. Vlasova. Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 5-93. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/