Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 5-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subset $H$ of the set of vertices of a $3$-connected finite graph $G$ is called contractible if $G(H)$ is connected and $G - H$ is $2$-connected. We prove that every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices. And there is a $3$-connected graph on $12$ vertices that does not contain a contractible set on $5$ vertices.
@article{ZNSL_2022_518_a0,
     author = {N. Yu. Vlasova},
     title = {Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--93},
     year = {2022},
     volume = {518},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/}
}
TY  - JOUR
AU  - N. Yu. Vlasova
TI  - Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 5
EP  - 93
VL  - 518
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/
LA  - ru
ID  - ZNSL_2022_518_a0
ER  - 
%0 Journal Article
%A N. Yu. Vlasova
%T Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 5-93
%V 518
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/
%G ru
%F ZNSL_2022_518_a0
N. Yu. Vlasova. Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 5-93. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/

[1] M. Kriesell, “Contractible subgraphs in 3-connected graphs”, J. Comb. Theory, Ser. B, 80 (2000), 32–48

[2] M. Kriesell, “On small contractible subgraphs in 3-connected graphs of small avarage degree”, Math. Semin. der Universitat Hamburg (Bundesstrabe 55, D-20146 Hamburg)

[3] W. McCuaig, K. Ota, “Contractible triples in 3-connected graphs”, J. Comb. Theory, Ser. B, 60 (1994), 308–314

[4] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966

[5] R. Halin, “A Theorem on $n$-connected graphs”, J. Combin. Theory, 7:2 (1969), 150–154

[6] N. Yu. Vlasova, “O styagivaemykh 5-vershinnykh podgrafakh trekhsvyaznogo grafa”, Zapiski nauchnykh seminarov POMI, 475, 2018, 22–40

[7] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106

[8] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93

[9] D. V. Karpov, “Razdelyayuschie mnozhestva v k-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60

[10] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[11] D. V. Karpov, “Minimalnye dvusvyaznye grafy”, Zap. nauchn. semin. POMI, 417, 2013, 106–127

[12] D. V. Karpov, “Large contractible subgraphs of a 3-connected graph”, Discussiones Mathematicae Graph Theory (to appear)