@article{ZNSL_2022_518_a0,
author = {N. Yu. Vlasova},
title = {Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--93},
year = {2022},
volume = {518},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/}
}
N. Yu. Vlasova. Every $3$-connected graph on at least $13$ vertices has a contractible set on $5$ vertices. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XIII, Tome 518 (2022), pp. 5-93. http://geodesic.mathdoc.fr/item/ZNSL_2022_518_a0/
[1] M. Kriesell, “Contractible subgraphs in 3-connected graphs”, J. Comb. Theory, Ser. B, 80 (2000), 32–48
[2] M. Kriesell, “On small contractible subgraphs in 3-connected graphs of small avarage degree”, Math. Semin. der Universitat Hamburg (Bundesstrabe 55, D-20146 Hamburg)
[3] W. McCuaig, K. Ota, “Contractible triples in 3-connected graphs”, J. Comb. Theory, Ser. B, 60 (1994), 308–314
[4] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966
[5] R. Halin, “A Theorem on $n$-connected graphs”, J. Combin. Theory, 7:2 (1969), 150–154
[6] N. Yu. Vlasova, “O styagivaemykh 5-vershinnykh podgrafakh trekhsvyaznogo grafa”, Zapiski nauchnykh seminarov POMI, 475, 2018, 22–40
[7] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106
[8] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93
[9] D. V. Karpov, “Razdelyayuschie mnozhestva v k-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60
[10] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105
[11] D. V. Karpov, “Minimalnye dvusvyaznye grafy”, Zap. nauchn. semin. POMI, 417, 2013, 106–127
[12] D. V. Karpov, “Large contractible subgraphs of a 3-connected graph”, Discussiones Mathematicae Graph Theory (to appear)