Skew Howe duality and $q$-Krawtchouk polynomial ensemble
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 106-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the $q$-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
			
            
            
            
          
        
      @article{ZNSL_2022_517_a6,
     author = {A. Nazarov and P. Nikitin and D. Sarafannikov},
     title = {Skew {Howe} duality and $q${-Krawtchouk} polynomial ensemble},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--124},
     publisher = {mathdoc},
     volume = {517},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/}
}
                      
                      
                    TY - JOUR AU - A. Nazarov AU - P. Nikitin AU - D. Sarafannikov TI - Skew Howe duality and $q$-Krawtchouk polynomial ensemble JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 106 EP - 124 VL - 517 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/ LA - en ID - ZNSL_2022_517_a6 ER -
A. Nazarov; P. Nikitin; D. Sarafannikov. Skew Howe duality and $q$-Krawtchouk polynomial ensemble. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 106-124. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/