Skew Howe duality and $q$-Krawtchouk polynomial ensemble
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 106-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the $q$-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
@article{ZNSL_2022_517_a6,
     author = {A. Nazarov and P. Nikitin and D. Sarafannikov},
     title = {Skew {Howe} duality and $q${-Krawtchouk} polynomial ensemble},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--124},
     year = {2022},
     volume = {517},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/}
}
TY  - JOUR
AU  - A. Nazarov
AU  - P. Nikitin
AU  - D. Sarafannikov
TI  - Skew Howe duality and $q$-Krawtchouk polynomial ensemble
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 106
EP  - 124
VL  - 517
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/
LA  - en
ID  - ZNSL_2022_517_a6
ER  - 
%0 Journal Article
%A A. Nazarov
%A P. Nikitin
%A D. Sarafannikov
%T Skew Howe duality and $q$-Krawtchouk polynomial ensemble
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 106-124
%V 517
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/
%G en
%F ZNSL_2022_517_a6
A. Nazarov; P. Nikitin; D. Sarafannikov. Skew Howe duality and $q$-Krawtchouk polynomial ensemble. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 106-124. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/

[1] G. A. Anderson, A. Guionnet, O. Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, 2010 | MR

[2] J. Baik et.al., Discrete Orthogonal Polynomials. Asymptotics and Applications, Annals of Mathematics Studies, AM-164, Princeton University Press, 2007 | MR

[3] Ph. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Int. Math. Research Noties, 2001:4 (2001), 179–192 | DOI | MR

[4] A. Borodin, G. Olshanski, “Asymptotics of Plancherel-type random partitions”, J. Algebra, 313:1 (2007), 40–60 | DOI | MR

[5] R. Brent, Ch. Krattenthaler, O. Warnaar, “Discrete analogues of Macdonald-Mehta integrals”, J. Combin. Theory, Ser. A, 144 (2016), 80–138 | DOI | MR

[6] J. Breuer, M. Duits, “Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients”, J. Amer. Math. Soc., 30:1 (2017), 27–66 | DOI | MR

[7] H. Cohn, M. Larsen, J. Propp, The shape of a typical boxed plane partition, 1998, arXiv: math/9801059 | MR

[8] I. Gessel, G. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58:3 (1985), 300–321 | DOI | MR

[9] V. Gorin, Lectures on random lozenge tilings, Cambridge Studies in Advanced Mathematics, 193, Cambridge University Press, 2021 | MR

[10] V. Gorin, “Nonintersecting paths and the Hahn orthogonal polynomial ensemble”, Funct. Analysis Its Appl., 42:3 (2008), 180–197 | DOI | MR

[11] J. Gravner, C. A. Tracy, H. Widom, “Limit theorems for height fluctuations in a class of discrete space and time growth models”, J. Statist. Phys., 102:5–6 (2001), 1085–1132 | DOI | MR

[12] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, The Schur Lectures (1992, Tel Aviv), 1995, 1–182 | MR

[13] R. Howe, “Remarks on classical invariant theory”, Trans. Amer. Math. Soc., 313:2 (1989), 539–570 | DOI | MR

[14] M. EH Ismail, W. Van Assche, Encyclopedia of Special Functions: The Askey–Bateman Project, v. I, Univariate Orthogonal Polynomials, ed. Mourad Ismail, 2020 | MR

[15] V. G Kac, Infinite-dimensional Lie algebras, Cambridge University Press, 1990 | MR

[16] S. V. Kerov, “On asymptotic distribution of symmetry types of high rank tensors”, Zap. Nauchn. Semi. POMI, 155, 1986, 181–186 | MR

[17] A. Kirillov, An introduction to Lie groups and Lie algebras, Cambridge Studies in Advanced Mathematics, 113, Cambridge University Press, 2008 | MR

[18] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer Science Business Media, 2010 | MR

[19] B. Lindström, “On the vector representations of induced matroids”, Bull. London Math. Soc., 5 (1973), 85–90 | DOI | MR

[20] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | MR

[21] I. G. Mackdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1998 | MR

[22] A. Nazarov, O. Postnova, T. Scrimshaw, Skew Howe duality and limit shapes of Young diagrams, 2021, arXiv: 2111.12426

[23] A. Okounkov, “Infinite wedge and random partitions”, Selecta Math., 7:1 (2001), 57–81 | DOI | MR

[24] A. Okounkov, “Random matrices and random permutations”, Int. Math. Res. Not., 20 (2000), 1043–1095 | DOI | MR

[25] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16:3 (2003), 581–603 | DOI | MR

[26] G. Panova, P. Śniady, “Skew Howe duality and random rectangular Young tableaux”, Algebraic Combin., 1:1 (2018), 81–94 | DOI | MR

[27] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. I, Functional Analysis, Academic Press, 1981 | MR

[28] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Dokl. Akad. Nauk, 233:6 (1977), 1024–1027 | MR