Skew Howe duality and $q$-Krawtchouk polynomial ensemble
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 106-124

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the $q$-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
@article{ZNSL_2022_517_a6,
     author = {A. Nazarov and P. Nikitin and D. Sarafannikov},
     title = {Skew {Howe} duality and $q${-Krawtchouk} polynomial ensemble},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--124},
     publisher = {mathdoc},
     volume = {517},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/}
}
TY  - JOUR
AU  - A. Nazarov
AU  - P. Nikitin
AU  - D. Sarafannikov
TI  - Skew Howe duality and $q$-Krawtchouk polynomial ensemble
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 106
EP  - 124
VL  - 517
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/
LA  - en
ID  - ZNSL_2022_517_a6
ER  - 
%0 Journal Article
%A A. Nazarov
%A P. Nikitin
%A D. Sarafannikov
%T Skew Howe duality and $q$-Krawtchouk polynomial ensemble
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 106-124
%V 517
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/
%G en
%F ZNSL_2022_517_a6
A. Nazarov; P. Nikitin; D. Sarafannikov. Skew Howe duality and $q$-Krawtchouk polynomial ensemble. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 106-124. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a6/