Spectrum and absolute of the graph of two-row Young diagrams
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 55-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the simplest graph of two-rows Young diagrams we are giving the elementary presentation of the theory of the traces of $AF$-algebras and the central measures The implicit description of measures as Markov chains with two states is given. We emphasize the role of the notion of homogeneity in this context. We embedded the homogeneity central measures besides only one of them to the Bernoulli scheme and from the other side the isomorphism (RSK) of each of them with those schemes. We also give a geometrical condition of the centrality of the measure.
@article{ZNSL_2022_517_a3,
     author = {A. M. Vershik},
     title = {Spectrum and absolute of the graph of two-row {Young} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--69},
     year = {2022},
     volume = {517},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a3/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Spectrum and absolute of the graph of two-row Young diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 55
EP  - 69
VL  - 517
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a3/
LA  - ru
ID  - ZNSL_2022_517_a3
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Spectrum and absolute of the graph of two-row Young diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 55-69
%V 517
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a3/
%G ru
%F ZNSL_2022_517_a3
A. M. Vershik. Spectrum and absolute of the graph of two-row Young diagrams. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 55-69. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a3/

[1] J. Dixmier, $C^*$-algebras, North-Holland, 1982 | MR

[2] O. Bratteli, “Inductive limit of finite dimensional $C^*$-algebras”, TAMS, 171 (1972), 195–234 | MR

[3] A. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, J. Sov. Math., 28 (1982), 667–674 | DOI | MR

[4] A. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR

[5] A. Vershik, A. Malyutin, “Absolyut konechno porozhdennykh grupp: II. Laplasova i vyrozhdennaya chasti”, Funkts. analiz i ego pril., 52:3 (2018), 3–21 | MR

[6] A. Vershik, A. Malyutin, “Fazovyi perekhod v zadache o granitse-vykhod dlya sluchainykh bluzhdanii na gruppakh”, Funkts. analiz i ego pril., 49:2 (2015), 7–20

[7] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzahlbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR

[8] A. Vershik, “Odnomernye tsentralnye mery na numeratsiyakh uporyadochennykh mnozhestv”, Funk. anal. i pril., 56:4 (2022), 17–24

[9] A. Vershik, F. Petrov, “Central measures of continuous graded graphs: the case of distinct frequencies”, European J. Math., 8 (2022), 393–410 | DOI | MR

[10] A. Vershik, S. Kerov, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted-Knuth algoritm”, SIAM J. Alg. Discr. Methods, 7:1 (1986), 116–124 | DOI | MR

[11] A. Vershik, N. Tsilevich, “Graf Shura–Veilya i teorema Toma”, Funk. Anal. i pril., 55:3 (2021), 26–41

[12] D. Romik, P .Sniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR

[13] P. Sniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR