@article{ZNSL_2022_517_a3,
author = {A. M. Vershik},
title = {Spectrum and absolute of the graph of two-row {Young} diagrams},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--69},
year = {2022},
volume = {517},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a3/}
}
A. M. Vershik. Spectrum and absolute of the graph of two-row Young diagrams. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 55-69. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a3/
[1] J. Dixmier, $C^*$-algebras, North-Holland, 1982 | MR
[2] O. Bratteli, “Inductive limit of finite dimensional $C^*$-algebras”, TAMS, 171 (1972), 195–234 | MR
[3] A. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, J. Sov. Math., 28 (1982), 667–674 | DOI | MR
[4] A. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR
[5] A. Vershik, A. Malyutin, “Absolyut konechno porozhdennykh grupp: II. Laplasova i vyrozhdennaya chasti”, Funkts. analiz i ego pril., 52:3 (2018), 3–21 | MR
[6] A. Vershik, A. Malyutin, “Fazovyi perekhod v zadache o granitse-vykhod dlya sluchainykh bluzhdanii na gruppakh”, Funkts. analiz i ego pril., 49:2 (2015), 7–20
[7] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzahlbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR
[8] A. Vershik, “Odnomernye tsentralnye mery na numeratsiyakh uporyadochennykh mnozhestv”, Funk. anal. i pril., 56:4 (2022), 17–24
[9] A. Vershik, F. Petrov, “Central measures of continuous graded graphs: the case of distinct frequencies”, European J. Math., 8 (2022), 393–410 | DOI | MR
[10] A. Vershik, S. Kerov, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted-Knuth algoritm”, SIAM J. Alg. Discr. Methods, 7:1 (1986), 116–124 | DOI | MR
[11] A. Vershik, N. Tsilevich, “Graf Shura–Veilya i teorema Toma”, Funk. Anal. i pril., 55:3 (2021), 26–41
[12] D. Romik, P .Sniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR
[13] P. Sniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR