Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 36-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We compute the cycle indices of the Weyl group $W(\mathrm{E}_6)$ in its action on the vertices of the Schläli polytope $(\mathrm{E}_6, \varphi_1)$ and of the Weyl group $W(\mathrm{E}_7)$ in its action on the vertices of the Hesse polytope $(\mathrm{E}_7, \varphi_7)$. This is done purely by hand using the following visual aids – weight diagrams of the corresponding representations to encode the action of the Weyl groups on the polytopes, and the enhanced Dynkin diagrams of the corresponding root systems to encode the conjugacy classes of the Weyl groups themselves, in the style of Carter and Stekolshchik.
@article{ZNSL_2022_517_a2,
     author = {N. Vavilov and V. Migrin},
     title = {Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--54},
     year = {2022},
     volume = {517},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a2/}
}
TY  - JOUR
AU  - N. Vavilov
AU  - V. Migrin
TI  - Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 36
EP  - 54
VL  - 517
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a2/
LA  - en
ID  - ZNSL_2022_517_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%A V. Migrin
%T Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 36-54
%V 517
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a2/
%G en
%F ZNSL_2022_517_a2
N. Vavilov; V. Migrin. Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 36-54. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a2/

[1] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR

[2] J. C. Baez, “From the icosahedron to $\mathrm{E}^*_8$”, Lond. Math. Soc. Newsl., 476 (2018), 18–23 | MR

[3] M. Berger, Geometry, Translated from the French by M. Cole and S. Levy, v. II, Universitext, Springer-Verlag, Berlin, 1987, x+406 pp. | MR

[4] G. Blind, R. Blind, “The semiregular polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154 | DOI | MR

[5] D. Borthwick, S. Garibaldi, Did a $1$-dimensional magnet detect a $248$-dimensional Lie algebra?, Notices Amer. Math. Soc., 58:8 (2011), 1055–1066 | MR

[6] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968, 288 pp. | MR

[7] R. W. Carter, “Conjugacy classes in the Weyl group”, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer, Berlin, 1970, 297–318 | MR

[8] R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25:1 (1972), 1–59 | MR

[9] B. Champagne, M. Kjiri, J. Patera, R. T. Sharp, “Description of reflection-generated polytopes using decorated Coxeter diagrams”, Can. J. Physics, 73:9–10 (2011), 566–584

[10] W.-N. Chang, J.-H. Lee, S.-H. Lee, Y. J. Lee, “Gosset polytopes in integral octonions”, Czechoslovak Math. J., 64 (139):3 (2014), 683–702 | DOI | MR

[11] J. Conway, N. Sloane, Sphere packing, lattices, and groups, Springer-Verlag, New York, 1988 | MR

[12] J. Conway, N. Sloane, “The cell structures of certain lattices”, Miscelanea Mat., eds. P. Hilton, F. Hirzebruch, and R. Remmert, Springer-Verlag, New York, 1991, 71–107 | DOI | MR

[13] J. H. Conway, D. A. Smith, On quaternions and octonions, A. K. Peters, Natick, MA, 2003 | MR

[14] H. S. M. Coxeter, Regular Polytopes, 3rd edition, Dover, New York, 1973 | MR

[15] H. S. M. Coxeter, “Regular and semi-regular polytopes. II”, Math. Z., 188 (1985), 559–591 | DOI | MR

[16] H. S. M. Coxeter, “Regular and semi-regular polytopes. III”, Math. Z., 200 (1988), 3–45 ; Reprinted in: Kaleidoscopes: Selected Writings of H. S. M. Coxeter, eds. F. A. Sherk, P. McMullen, A. C. Thompson and A. I. Weiss, Wiley Interscience, New York, etc., 1995, 313–355 | DOI | MR | MR

[17] H. S. M. Coxeter, Regular Complex Polytopes, 2nd edition, Cambridge University Press, Cambridge, 1991 | MR

[18] M. Dutour Sikirić, W. Myrwold, “The special cuts of the $600$-cell”, Beiträge Algebra Geom., 49:1 (2008), 269–275 | MR

[19] E. B. Dynkin, A. N. Minchenko, “Enhanced Dynkin diagrams and Weyl orbits”, Transform. Groups, 15:4 (2010), 813–841 | DOI | MR

[20] S. Garibaldi, “$\mathrm{E}^*_8$, the most exceptional group”, Bull. Amer. Math. Soc., 53:4 (2016), 643–671 | DOI | MR

[21] M. Geck, G. Pfeiffer, Characters of finite Coxeter groups and Iwahori—Hecke algebras, Clarendon Press, Oxford, 2000 | MR

[22] V. P. Grishukhin, “Voronoi polyhedra of the root lattice $\mathrm{E}^*_6$ and its dual”, Discrete Math. Appl., 21:1 (2011), 91–108 | DOI | MR

[23] V. P. Grishukhin, “Delaunay and Voronoi polytopes of the root lattice $\mathrm{E}^*_7$ and of the dual lattice $\mathrm{E}^*_7$”, Proc. Steklov Inst. Math., 275 (2011), 60–77 | DOI | MR

[24] A. M. Gurin, V. A. Zalgaller, “On the history of the study of convex polyhedra with regular faces and faces composed of regular ones”, Proc. St. Petersburg Math. Soc., 14 ; Amer. Math. Soc. Translations. ser. 2, 228, Providence, RI, 2009, 169–229 | MR | DOI

[25] A. Harebov, N. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR

[26] G. Hofmann, K.-H. Neeb, On convex hulls of orbits of Coxeter groups and Weyl groups, 2012, arXiv: 1204.2095v1 [math.RT] | MR

[27] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR

[28] B. Kostant, “Experimental evidence for the occurrence of $\mathrm{E}^*_8$ in nature and the radii of the Gosset circles”, Selecta Math. (N.S.), 16:3 (2010), 419–438 | DOI | MR

[29] A. Yu. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, 2014, arXiv: 1401.0849 [math.AG]

[30] D. Madore, The $\mathrm{E}^*_8$ root system, http://www.madore.org/d̃avid/math/e8w.html

[31] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974 | MR

[32] L. Manivel, “Configurations of lines and models of Lie algebras”, J. Algebra, 304:1 (2006), 457–486 | DOI | MR

[33] P. McMullen, Geometric regular polytopes, Cambridge University Press, 2020

[34] P. McMullen, E. Schulte, Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, 92, Cambridge University Press, Cambridge, 2003 | MR

[35] V. Migrin, Combinatorics of polyhedra related to root systems, Diploma paper, St Petersburg State Univ, 2021, 60 pp.

[36] V. Migrin, N. Vavilov, “Exceptional uniform polytopes of the $\mathrm{E}^*_6$, $\mathrm{E}^*_7$ and $\mathrm{E}^*_8$ symmetry types”, Polynomial Computer Algebra (St. Petersburg, 2021), 203–225 https://pca-pdmi.ru/2021/files/59/Migrin-Vavilov-PCA2021

[37] V. Migrin, N. Vavilov, “Enhanced Dynkin diagrams done right”, Zap. Nauchn. Semin. POMI, 500, 2021, 11–29 | MR

[38] R. V. Moody, J. Patera, “Voronoi and Delaunay cells of root lattices: Classification of their faces and facets by Coxeter–Dynkin diagrams”, J. Phys. A, Math. Gen., 25 (1992), 5089–5134 | DOI | MR

[39] R. V. Moody, J. Patera, “Voronoi domains and dual cells in the generalized kaleidoscope with applications to root and weight lattices”, Canad. J. Math., 47:3 (1995), 573–605 | DOI | MR

[40] T. Oshima, A classification of subsystems of a root system, 2007, 47 pp., arXiv: math/0611904v4 [math RT]

[41] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR

[42] M. Szajewska, “Faces of root polytopes in all dimensions”, Acta Crystallogr. Sect. A, 72 (2016), 465–471 | DOI | MR

[43] R. Stekolshchik, “Equivalence of Carter diagrams”, Algebra Discrete Math., 23:1 (2017), 138–179 | MR

[44] J. R. Stembridge, “Explicit matrices for irreducible representations of Weyl groups”, Represent. Theory, 8 (2004), 267–289 ; Erratum, 10 (2006), 48 | DOI | MR | DOI | MR

[45] J. R. Stembridge, Coxeter planes, http://www.math.lsa.umich.edu/ ̃ jrs/cox plane.html

[46] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR

[47] N. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR

[48] N. A. Vavilov, “How to see the signs of structure constants”, St. Petersburg Math. J., 19:4 (2008), 519–543 | DOI | MR

[49] N. A. Vavilov, “Numerology of quadratic equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR

[50] N. A. Vavilov, “Some more exceptional numerology”, J. Math. Sci. (N.Y.), 171:3 (2010), 317–321 | DOI | MR

[51] N. A. Vavilov, N. P. Kharchev, “Orbits of the subsystem stabilizers”, J. Math. Sci. (N.Y.), 145:1 (2007), 4751–4764 | DOI | MR

[52] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}^*_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR

[53] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of the Chevalley group of type $\mathrm{E}^*_7$”, St. Petersburg Math. J., 27:6 (2016), 899–921 | DOI | MR

[54] R. T. Worley, “The Voronoi region of $\mathrm{E}^*_6$”, J. Aust. Math. Soc., Ser. A, 43 (1987), 268–278 | DOI | MR

[55] R. T. Worley, “The Voronoi region of $\mathrm{E}^*_7$”, SIAM J. Discrete Math., 1:1 (1988), 134–141 | DOI | MR