@article{ZNSL_2022_517_a2,
author = {N. Vavilov and V. Migrin},
title = {Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--54},
year = {2022},
volume = {517},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a2/}
}
N. Vavilov; V. Migrin. Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 36-54. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a2/
[1] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR
[2] J. C. Baez, “From the icosahedron to $\mathrm{E}^*_8$”, Lond. Math. Soc. Newsl., 476 (2018), 18–23 | MR
[3] M. Berger, Geometry, Translated from the French by M. Cole and S. Levy, v. II, Universitext, Springer-Verlag, Berlin, 1987, x+406 pp. | MR
[4] G. Blind, R. Blind, “The semiregular polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154 | DOI | MR
[5] D. Borthwick, S. Garibaldi, Did a $1$-dimensional magnet detect a $248$-dimensional Lie algebra?, Notices Amer. Math. Soc., 58:8 (2011), 1055–1066 | MR
[6] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968, 288 pp. | MR
[7] R. W. Carter, “Conjugacy classes in the Weyl group”, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer, Berlin, 1970, 297–318 | MR
[8] R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25:1 (1972), 1–59 | MR
[9] B. Champagne, M. Kjiri, J. Patera, R. T. Sharp, “Description of reflection-generated polytopes using decorated Coxeter diagrams”, Can. J. Physics, 73:9–10 (2011), 566–584
[10] W.-N. Chang, J.-H. Lee, S.-H. Lee, Y. J. Lee, “Gosset polytopes in integral octonions”, Czechoslovak Math. J., 64 (139):3 (2014), 683–702 | DOI | MR
[11] J. Conway, N. Sloane, Sphere packing, lattices, and groups, Springer-Verlag, New York, 1988 | MR
[12] J. Conway, N. Sloane, “The cell structures of certain lattices”, Miscelanea Mat., eds. P. Hilton, F. Hirzebruch, and R. Remmert, Springer-Verlag, New York, 1991, 71–107 | DOI | MR
[13] J. H. Conway, D. A. Smith, On quaternions and octonions, A. K. Peters, Natick, MA, 2003 | MR
[14] H. S. M. Coxeter, Regular Polytopes, 3rd edition, Dover, New York, 1973 | MR
[15] H. S. M. Coxeter, “Regular and semi-regular polytopes. II”, Math. Z., 188 (1985), 559–591 | DOI | MR
[16] H. S. M. Coxeter, “Regular and semi-regular polytopes. III”, Math. Z., 200 (1988), 3–45 ; Reprinted in: Kaleidoscopes: Selected Writings of H. S. M. Coxeter, eds. F. A. Sherk, P. McMullen, A. C. Thompson and A. I. Weiss, Wiley Interscience, New York, etc., 1995, 313–355 | DOI | MR | MR
[17] H. S. M. Coxeter, Regular Complex Polytopes, 2nd edition, Cambridge University Press, Cambridge, 1991 | MR
[18] M. Dutour Sikirić, W. Myrwold, “The special cuts of the $600$-cell”, Beiträge Algebra Geom., 49:1 (2008), 269–275 | MR
[19] E. B. Dynkin, A. N. Minchenko, “Enhanced Dynkin diagrams and Weyl orbits”, Transform. Groups, 15:4 (2010), 813–841 | DOI | MR
[20] S. Garibaldi, “$\mathrm{E}^*_8$, the most exceptional group”, Bull. Amer. Math. Soc., 53:4 (2016), 643–671 | DOI | MR
[21] M. Geck, G. Pfeiffer, Characters of finite Coxeter groups and Iwahori—Hecke algebras, Clarendon Press, Oxford, 2000 | MR
[22] V. P. Grishukhin, “Voronoi polyhedra of the root lattice $\mathrm{E}^*_6$ and its dual”, Discrete Math. Appl., 21:1 (2011), 91–108 | DOI | MR
[23] V. P. Grishukhin, “Delaunay and Voronoi polytopes of the root lattice $\mathrm{E}^*_7$ and of the dual lattice $\mathrm{E}^*_7$”, Proc. Steklov Inst. Math., 275 (2011), 60–77 | DOI | MR
[24] A. M. Gurin, V. A. Zalgaller, “On the history of the study of convex polyhedra with regular faces and faces composed of regular ones”, Proc. St. Petersburg Math. Soc., 14 ; Amer. Math. Soc. Translations. ser. 2, 228, Providence, RI, 2009, 169–229 | MR | DOI
[25] A. Harebov, N. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR
[26] G. Hofmann, K.-H. Neeb, On convex hulls of orbits of Coxeter groups and Weyl groups, 2012, arXiv: 1204.2095v1 [math.RT] | MR
[27] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR
[28] B. Kostant, “Experimental evidence for the occurrence of $\mathrm{E}^*_8$ in nature and the radii of the Gosset circles”, Selecta Math. (N.S.), 16:3 (2010), 419–438 | DOI | MR
[29] A. Yu. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, 2014, arXiv: 1401.0849 [math.AG]
[30] D. Madore, The $\mathrm{E}^*_8$ root system, http://www.madore.org/d̃avid/math/e8w.html
[31] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974 | MR
[32] L. Manivel, “Configurations of lines and models of Lie algebras”, J. Algebra, 304:1 (2006), 457–486 | DOI | MR
[33] P. McMullen, Geometric regular polytopes, Cambridge University Press, 2020
[34] P. McMullen, E. Schulte, Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, 92, Cambridge University Press, Cambridge, 2003 | MR
[35] V. Migrin, Combinatorics of polyhedra related to root systems, Diploma paper, St Petersburg State Univ, 2021, 60 pp.
[36] V. Migrin, N. Vavilov, “Exceptional uniform polytopes of the $\mathrm{E}^*_6$, $\mathrm{E}^*_7$ and $\mathrm{E}^*_8$ symmetry types”, Polynomial Computer Algebra (St. Petersburg, 2021), 203–225 https://pca-pdmi.ru/2021/files/59/Migrin-Vavilov-PCA2021
[37] V. Migrin, N. Vavilov, “Enhanced Dynkin diagrams done right”, Zap. Nauchn. Semin. POMI, 500, 2021, 11–29 | MR
[38] R. V. Moody, J. Patera, “Voronoi and Delaunay cells of root lattices: Classification of their faces and facets by Coxeter–Dynkin diagrams”, J. Phys. A, Math. Gen., 25 (1992), 5089–5134 | DOI | MR
[39] R. V. Moody, J. Patera, “Voronoi domains and dual cells in the generalized kaleidoscope with applications to root and weight lattices”, Canad. J. Math., 47:3 (1995), 573–605 | DOI | MR
[40] T. Oshima, A classification of subsystems of a root system, 2007, 47 pp., arXiv: math/0611904v4 [math RT]
[41] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR
[42] M. Szajewska, “Faces of root polytopes in all dimensions”, Acta Crystallogr. Sect. A, 72 (2016), 465–471 | DOI | MR
[43] R. Stekolshchik, “Equivalence of Carter diagrams”, Algebra Discrete Math., 23:1 (2017), 138–179 | MR
[44] J. R. Stembridge, “Explicit matrices for irreducible representations of Weyl groups”, Represent. Theory, 8 (2004), 267–289 ; Erratum, 10 (2006), 48 | DOI | MR | DOI | MR
[45] J. R. Stembridge, Coxeter planes, http://www.math.lsa.umich.edu/ ̃ jrs/cox plane.html
[46] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR
[47] N. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR
[48] N. A. Vavilov, “How to see the signs of structure constants”, St. Petersburg Math. J., 19:4 (2008), 519–543 | DOI | MR
[49] N. A. Vavilov, “Numerology of quadratic equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR
[50] N. A. Vavilov, “Some more exceptional numerology”, J. Math. Sci. (N.Y.), 171:3 (2010), 317–321 | DOI | MR
[51] N. A. Vavilov, N. P. Kharchev, “Orbits of the subsystem stabilizers”, J. Math. Sci. (N.Y.), 145:1 (2007), 4751–4764 | DOI | MR
[52] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}^*_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR
[53] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of the Chevalley group of type $\mathrm{E}^*_7$”, St. Petersburg Math. J., 27:6 (2016), 899–921 | DOI | MR
[54] R. T. Worley, “The Voronoi region of $\mathrm{E}^*_6$”, J. Aust. Math. Soc., Ser. A, 43 (1987), 268–278 | DOI | MR
[55] R. T. Worley, “The Voronoi region of $\mathrm{E}^*_7$”, SIAM J. Discrete Math., 1:1 (1988), 134–141 | DOI | MR