An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 268-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We suggest algorithms for factoring polynomials in the rings of multivariables formal power series over the ground field of zero–characteristic and over an algebraic closure of this ground field. Also we construct algorithms for factoring monic polynomials in one variable over these formal power series rings. We give explicit estimates for the complexity of suggested algorithms. These results are important for local investigation of algebraic varieties from the algorithmic point of view.
@article{ZNSL_2022_517_a14,
     author = {A. L. Chistov},
     title = {An algorithm for factoring polynomials in the ring of multivariable formal power series in zero{\textendash}characteristic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {268--290},
     year = {2022},
     volume = {517},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a14/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 268
EP  - 290
VL  - 517
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a14/
LA  - ru
ID  - ZNSL_2022_517_a14
ER  - 
%0 Journal Article
%A A. L. Chistov
%T An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 268-290
%V 517
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a14/
%G ru
%F ZNSL_2022_517_a14
A. L. Chistov. An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 268-290. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a14/

[1] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1964

[2] N. Burbaki, Kommutativnaya algebra, Moskva, M., 1971

[3] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188

[4] A. L. Chistov, “Effective Construction of a Nonsingular in Codimension One Algebraic Variety over a Zero-Characteristic Ground Field”, Zap. nauchn. semin. POMI, 387, 2011, 167–188 | MR

[5] A. L. Chistov, “An overview of effective normalization of a nonsingular in codimension one projective algebraic variety”, Zap. nauchn. semin. POMI, 373, 2009, 295–317 | MR

[6] A. L. Chistov, “Effektivnaya normalizatsiya neosobogo v korazmernosti odin algebraicheskogo nogoobraziya”, Dokl. Akademii nauk, 427:5 (2009), 605–608

[7] A. L. Chistov, “Polynomial complexity of the Newton–Puiseux algorithm”, International Symposium on Mathematical Foundations of Computer Science 1986, Lecture Notes in Computer Science, 233, Springer, 1986, 247–255 | DOI | MR

[8] H. Flenner, “Die Sätze von Bertini für lokale Ringe”, Math. Ann., 229 (1977), 97–111 | DOI | MR

[9] A. Seidenberg, “Constructions in algebra”, Transactions of the American Mathematical Society, 197 (1974), 273–313 | DOI | MR

[10] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, v. I-II, Izdatelstvo inostrannoi literatury, M., 1963