Comparing classicality of qutrits from Hilbert--Schmidt, Bures and Bogoliubov--Kubo--Mori ensembles
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 250-267
Voir la notice de l'article provenant de la source Math-Net.Ru
In the report we analyze the indicator/measure of classicality of quantum states defined as the probability to find a state with a positive Wigner function within a unitary invariant random ensemble. The indicators of classicality of three ensembles associated with the Hilbert–Schmidt, Bures and Bogoliubov–Kubo–Mori metrics on the space of quantum states of 3-level system are computed. Their dependence on a moduli parameter of the Wigner function is studied for all strata of a qutrit state space stratified in accordance with the unitary group action.
@article{ZNSL_2022_517_a13,
author = {A. Khvedelidze and A. Torosyan},
title = {Comparing classicality of qutrits from {Hilbert--Schmidt,} {Bures} and {Bogoliubov--Kubo--Mori} ensembles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {250--267},
publisher = {mathdoc},
volume = {517},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a13/}
}
TY - JOUR AU - A. Khvedelidze AU - A. Torosyan TI - Comparing classicality of qutrits from Hilbert--Schmidt, Bures and Bogoliubov--Kubo--Mori ensembles JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 250 EP - 267 VL - 517 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a13/ LA - en ID - ZNSL_2022_517_a13 ER -
%0 Journal Article %A A. Khvedelidze %A A. Torosyan %T Comparing classicality of qutrits from Hilbert--Schmidt, Bures and Bogoliubov--Kubo--Mori ensembles %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 250-267 %V 517 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a13/ %G en %F ZNSL_2022_517_a13
A. Khvedelidze; A. Torosyan. Comparing classicality of qutrits from Hilbert--Schmidt, Bures and Bogoliubov--Kubo--Mori ensembles. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a13/