@article{ZNSL_2022_517_a12,
author = {V. B. Titov},
title = {Domains of possible motion in the general three body problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {225--249},
year = {2022},
volume = {517},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a12/}
}
V. B. Titov. Domains of possible motion in the general three body problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 225-249. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a12/
[1] V. G. Golubev, “O nekotorykh otsenkakh v neogranichennoi zadache trekh tel v sluchae, kogda dvizhenie odnoi iz par tel absolyutno ustoichivo po Khillu”, DAN, 240:4 (1978), 798–801 | MR
[2] G. Lemaitre, “Coordonnées Symétriques dans le Problème de Trois Corps”, Bulletin de l'Académie royale de Belgique (Classe de Sciences), 38 (1952), 582–592, 1218–1234 | MR
[3] K. V. Kholshevnikov, V. B. Titov, “Poverkhnost minimalnoi skorosti v ogranichennoi krugovoi zadache trekh tel”, Vest. S. Peterb. un-ta. Mat. Mekh. Astr., 7(65):4 (2020), 734–742
[4] L. G. Lukyanov, “O poverkhnostyakh nulevoi kineticheskoi energii”, Trudy GAISh, 76 (2006), 42
[5] R. Moeckel, R. Montgomery, “Symmetric Regularization, Reduction and Blow-up of the Planar Three-Body Problem”, Pacific J. Math., 262:1 (2013) | DOI | MR
[6] M.F. Subbotin, Vvedenie v teoreticheskuyu astronomiyu, Nauka, M., 1968
[7] V. Sebekhei, Teoriya orbit, Nauka, M., 1982
[8] V. Titov, “Some Properties of Lemaitre Regularization. Collinear Trajectories”, Astron. Nachr., 342:3 (2021), 588–597 | DOI | MR
[9] V. Titov, “Some Properties of Lemaitre Regularization. 2 Isosceles trajectories and figure-eight”, Astron. Nachr., 343:3 (2022), e2114006 | DOI | MR