@article{ZNSL_2022_517_a11,
author = {A. Tiskin},
title = {The {Chv\'atal{\textendash}Sankoff} problem: {Understanding} random string comparison through stochastic processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {191--224},
year = {2022},
volume = {517},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a11/}
}
A. Tiskin. The Chvátal–Sankoff problem: Understanding random string comparison through stochastic processes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 191-224. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a11/
[1] A. Abboud, A. Backurs, V. Vassilevska Williams, “Tight hardness results for LCS and other sequence similarity measures”, Proceedings of FOCS, 2015, 59–78 | MR
[2] K. S. Alexander, “The rate of convergence of the mean length of the longest common subsequence”, Annal. Appl. Probab., 4:4 (1994), 1074–1082 | MR
[3] C. E. R. Alves, E. N. Cáceres, S. W. Song, “An all-substrings common subsequence algorithm”, Discrete Appl. Math., 156:7 (2008), 1025–1035 | DOI | MR
[4] R. A. Baeza-Yates, R. Gavaldà, G. Navarro, R. Scheihing, “Bounding the expected length of longest common subsequences and forests”, Theory of Computing Systems, 32:4 (1999), 435–452 | DOI | MR
[5] K. E. Batcher, “Sorting networks and their applications”, Proceedings of AFIPS, 32 (1968), 307–314
[6] A. Borodin, I. Corwin, V. Gorin, “Stochastic six-vertex model”, Duke Math. J., 165:3 (2016), 563–624 | DOI | MR
[7] K. Bringmann, M. K{ü}nnemann, “Multivariate fine-grained complexity of longest common subsequence”, Proceedings of ACM-SIAM SODA, 2018, 1216–1235 | MR
[8] B. Bukh, C. Cox, “Periodic words, common subsequences and frogs”, Annals Appl. Probab., 32:2 (2022), 1295–1332 | DOI | MR
[9] B. Bukh, V. Guruswami, J. Hastad, “An improved bound on the fraction of correctable deletions”, IEEE Transactions on Information Theory, 63:1 (2017), 93–103 | DOI | MR
[10] R. Bundschuh, “High precision simulations of the longest common subsequence problem”, European Phys. J. B, 22:4 (2001), 533–541 | DOI
[11] J. Casse, “Probabilistic cellular automata with general alphabets possessing a Markov chain as an invariant distribution”, Adv. Appl. Probab., 48:2 (2016), 369–391 | DOI | MR
[12] C C Chang, H J Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, 73, third edition, North-Holland, 1990 | MR
[13] P. Charalampopoulos, P. Gawrychowski, S. Mozes, O. Weimann, “An Almost Optimal Edit Distance Oracle”, Proceedings of ICALP, Leibniz International Proceedings in Informatics, 198, 2021, 48:1–48:20 | MR
[14] P. Charalampopoulos, T. Kociumaka, Sh. Mozes, “Dynamic string alignment”, Proceedings of CPM, LIPIcs, 161, 2020, 9:1–9:13 | MR
[15] V. Chvátal, D. Sankoff, “Longest common subsequences of two random sequences”, J. Appl. Probab., 12:2 (1975), 306–315 | DOI | MR
[16] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, J. F. Reid, “A fast and practical bit-vector algorithm for the Longest Common Subsequence problem”, Inform. Proc. Letters, 80 (2001), 279–285 | DOI | MR
[17] M. Crochemore, G. M. Landau, M. Ziv-Ukelson, “A subquadratic sequence alignment algorithm for unrestricted score matrices”, SIAM J. Comput., 32 (2003), 1654–1673 | DOI | MR
[18] V. Dančík, Expected Length of Longest Common Subsequences, PhD thesis, University of Warwick, 1994
[19] J. Boutet De Monvel, “Extensive simulations for longest common subsequences: Finite size scaling, a cavity solution, and configuration space properties”, Europ. Phys. J. B, 7:2 (1999), 293–308 | DOI
[20] J. G. Deken, “Some limit results for longest common subsequences”, Discrete Math., 26:1 (1979), 17–31 | DOI | MR
[21] Pablo A. Ferrari, “TASEP hydrodynamics using microscopic characteristics”, Probab. Surveys, 15 (2018), 1–27 | MR
[22] P. Gawrychowski, “Faster algorithm for computing the edit distance between SLP-compressed strings”, Proceedings of SPIRE, Lecture Notes in Computer Science, 7608, 2012, 229–236 | DOI | MR
[23] D. Hermelin, G. M. Landau, S. Landau, O. Weimann, “Unified Compression-Based Acceleration of Edit-Distance Computation”, Algorithmica, 65:2 (2013), 339–353 | DOI | MR
[24] H. Hyyrö, “Mining bit-parallel LCS-length algorithms”, Proceedings of SPIRE, Lecture Notes in Computer Science, 10508, 2017, 214–220 | DOI | MR
[25] C U Jensen and H Lenzing, Model Theoretic Algebra, Algebra, Logic and Applications, 2, Gordon and Breach Science Publishers, 1989 | MR
[26] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, v. 3, Addison Wesley, 1998 | MR
[27] Th. Kriecherbauer, J. Krug, “A pedestrian's view on interacting particle systems, KPZ universality and random matrices”, J. Phys. A: Math. Theor., 43:40 (2010), 403001 | DOI | MR
[28] P. Krusche, A. Tiskin, “String comparison by transposition networks”, London Algorithmics 2008 Theory and Practice, Texts in Algorithmics, 11, College Publications, 2009 | MR
[29] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | MR
[30] G. S. Lueker, “Improved bounds on the average length of longest common subsequences”, J. ACM, 56:3 (2009), 17:1–17:38 | DOI | MR
[31] J. Mairesse, I. Marcovici, “Around probabilistic cellular automata”, Theor. Comput. Sci., 559 (2014), 42–72 | DOI | MR
[32] S. N. Majumdar, S. Nechaev, “Exact asymptotic results for the Bernoulli matching model of sequence alignment”, Phys. Review E: Statistical, Nonlinear, and Soft Matter Physics, 72:2 (2005), 020901 | DOI | MR
[33] J. Martin, P. Schmidt, “Multi-type TASEP in discrete time”, Latin Amer. J. Probab. Math. Statist., 8 (2011), 303–333 | MR
[34] W. J. Masek, M. S. Paterson, “A faster algorithm computing string edit distances”, J. Comput. System Sci., 20:1 (1980), 18–31 | DOI | MR
[35] U. Matarazzo, D. Tsur, M. Ziv-Ukelson, “Efficient all path score computations on grid graphs”, Theor Comput. Sci., 525 (2014), 138–149 | DOI | MR
[36] M. Paterson, V. Dančík, “Longest common subsequences”, Proceedings of MFCS, Lecture Notes in Computer Science, 841, 127–142 | DOI | MR
[37] P. A. Pevzner, M. S. Waterman, “Open combinatorial problems in computational molecular biology”, Proceedings of ISTCS, 158–173 | MR
[38] V. B. Priezzhev, G. M. Sch{ü}tz, “Exact solution of the Bernoulli matching model of sequence alignment”, J. Statist. Mech.: Theory and Experiment, 09 (2008), P09007
[39] N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, “The asymmetric exclusion process: comparison of update procedures”, J. Statist. Phys., 92 (1998), 151–194 | DOI | MR
[40] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge University Press, Cambridge, 2014 | MR
[41] H. Rost, “Non-equilibrium behaviour of a many particle process: Density profile and local equilibria”, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 58:1 (1981), 41–53 | DOI | MR
[42] Y. Sakai, “An Almost Quadratic Time Algorithm for Sparse Spliced Alignment”, Theory Comput. Systems, 48:1 (2011), 189–210 | DOI | MR
[43] Y. Sakai, “A substring–substring LCS data structure”, Theor. Comput. Sci., 753:2 (2019), 16–34 | DOI | MR
[44] S. Salsa, Partial Differential Equations in Action, UNITEXT, 99, Springer International Publishing, 2016 | MR
[45] M. Schimd, G. Bilardi, “Bounds and Estimates on the Average Edit Distance”, Proceedings of SPIRE, 2019, 91–106 | MR
[46] J. P. Schmidt, “All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings”, SIAM J. Comput., 27:4 (1998), 972–992 | DOI | MR
[47] J. M. Steele, “An Efron-Stein inequality for nonsymmetric statistics”, Annals Statist., 14:2 (1986), 753–758 | DOI | MR
[48] J. M. Steele, Probability Theory and Combinatorial Optimization, CBMS-NSF regional conference series in applied mathematics, 69, SIAM, 1997 | MR
[49] A. Tiskin, “Semi-local longest common subsequences in subquadratic time”, J. Discrete Algorithms, 6:4 (2008), 570–581 | DOI | MR
[50] A. Tiskin, “Semi-local string comparison: Algorithmic techniques and applications”, Math. Comput. Sci., 1:4 (2008), 571–603 | DOI | MR
[51] A. Tiskin, “Periodic String Comparison”, Proceedings of CPM, Lecture Notes in Computer Science, 5577, 2009, 193–206 | DOI | MR
[52] A. Tiskin, “Towards Approximate Matching in Compressed Strings: Local Subsequence Recognition”, Proceedings of CSR, Lecture Notes in Computer Science, 6651, 2011, 401–414 | DOI | MR
[53] A. Tiskin, “Fast distance multiplication of unit-monge matrices”, Algorithmica, 71 (2015), 859–888 | DOI | MR
[54] A. Tiskin, “Bounded-length Smith-Waterman alignment”, Proceedings of WABI, Leibniz International Proceedings in Informatics, 143, 2019, 16:1–16:12
[55] A. Tiskin, “Communication vs synchronisation in parallel string comparison”, Proceedings of SPAA, 2020, 479–489
[56] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Dokl. Akad. Nauk, 233:6 (1977), 1024–1027 | MR
[57] R. A. Wagner, M. J. Fischer, “The string-to-string correction problem”, J. ACM, 21:1 (1974), 168–173 | DOI | MR