On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 17-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Approximate trajectories of dynamic systems described by ordinary differential equations with quadratic right sides, found by reversible schemes, are considered. These schemes are notable for the fact that the transition from layer to layer is described by Creomna transformations, which gives a large set of algebraic properties. On the way of generalizing the theory of Lagutinski determinants, the necessary and sufficient condition of belonging of approximate trajectories to the hypersurfaces of given linear systems was found. When approximating classical oscillators integrated in elliptic functions, the points of the approximate solution line up on phase space in some lines that are ellipitic curves. Their equations are written explicitly for the Jacobi oscillator. In the case of the Volterra-Lotka system, these points line up in lines that are not algebraic. For the Kowalevski case of solid motion, it has been proven that the points of the approximate solution cannot lie even on hypersurfaces of the 4th order.
@article{ZNSL_2022_517_a1,
     author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
     title = {On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--35},
     year = {2022},
     volume = {517},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/}
}
TY  - JOUR
AU  - E. A. Ayryan
AU  - M. M. Gambaryan
AU  - M. D. Malykh
AU  - L. A. Sevastyanov
TI  - On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 17
EP  - 35
VL  - 517
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/
LA  - ru
ID  - ZNSL_2022_517_a1
ER  - 
%0 Journal Article
%A E. A. Ayryan
%A M. M. Gambaryan
%A M. D. Malykh
%A L. A. Sevastyanov
%T On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 17-35
%V 517
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/
%G ru
%F ZNSL_2022_517_a1
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 17-35. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/

[1] E. Hairer, G. Wanner, Ch. Lubich, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer, Berlin–Heidelberg–New York, 2000 | MR

[2] A. Baddur, M. D. Malykh, L. A. Sevastyanov, “O raznostnykh skhemakh, approksimiruyuschikh differentsialnye uravneniya pervogo poryadka i zadayuschikh proektivnye sootvetstviya mezhdu sloyami”, Zap. nauchn. semin. POMI, 507, 2021, 157–172

[3] F. Severi, Lezioni di geometria algebrica, Angelo Graghi, Padova, 1908 | MR

[4] V. P. Gerdt, M. D. Malykh, L. A. Sevastianov, Yu Ying, “On the properties of numerical solutions of dynamical systems obtained using the midpoint method”, Discrete and Continuous Models and Applied Computational Science, 27:3 (2019), 242–262 | DOI

[5] A. Baddur, M. M. Gambaryan, L. Gonsales, M. D. Malykh, “O realizatsii chislennykh metodov resheniya obyknovennykh differentsialnykh uravnenii v sistemakh kompyuternoi algebry”, Programmirovanie, 2023

[6] Yu. S. Sikorskii, Elementy teorii ellipticheskikh funktsii s prilozheniyami k mekhanike, ONTI, M.-L., 1936

[7] V. V. Golubev, Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GTTI, M., 1953 | MR

[8] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, RKhD, M.–Izhevsk, 2000

[9] M. N. Lagutinskii, “Prilozhenie polyarnykh operatsii k integrirovananiyu obyknovennykh differentsialnykh uravnenii v konechnom vide”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 12 (1911), 111–243

[10] M. N. Lagutinskii, “O nekotorykh polinomakh i svyazi ikh s algebraicheskim integrirovaniem obyknovennykh differentsialnnykh algebraicheskikh uravnenii”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 13 (1912), 200–224

[11] C. Christopher, J. Llibre, J. Vitório Pereira, “Multiplicity of Invariant Algebraic Curves in Polynomial Vector Fields”, Pacific J. Math., 229:1 (2007), 63–117 | DOI | MR

[12] G. Chéze, “Computation of Darboux Polynomials and Rational First Integrals with Bounded Degree in Polynomial Time”, Journal of Complexity, 27:2 (2011), 246–262 | DOI | MR

[13] M. D. Malykh, “Ob otyskanii ratsionalnykh integralov sistem obyknovennykh differentsialnykh uravnenii po metodu M.N. Lagutinskogo”, Vestnik NIYaU MIFI, 5:24 (2016), 327–336

[14] M. D. Malykh, Yui In, “Metodika otyskaniya algebraicheskikh integralov differentsialnykh uravnenii pervogo poryadka”, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika, 26:3 (2018), 285–291