@article{ZNSL_2022_517_a1,
author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
title = {On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--35},
year = {2022},
volume = {517},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/}
}
TY - JOUR AU - E. A. Ayryan AU - M. M. Gambaryan AU - M. D. Malykh AU - L. A. Sevastyanov TI - On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 17 EP - 35 VL - 517 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/ LA - ru ID - ZNSL_2022_517_a1 ER -
%0 Journal Article %A E. A. Ayryan %A M. M. Gambaryan %A M. D. Malykh %A L. A. Sevastyanov %T On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 17-35 %V 517 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/ %G ru %F ZNSL_2022_517_a1
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 17-35. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/
[1] E. Hairer, G. Wanner, Ch. Lubich, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer, Berlin–Heidelberg–New York, 2000 | MR
[2] A. Baddur, M. D. Malykh, L. A. Sevastyanov, “O raznostnykh skhemakh, approksimiruyuschikh differentsialnye uravneniya pervogo poryadka i zadayuschikh proektivnye sootvetstviya mezhdu sloyami”, Zap. nauchn. semin. POMI, 507, 2021, 157–172
[3] F. Severi, Lezioni di geometria algebrica, Angelo Graghi, Padova, 1908 | MR
[4] V. P. Gerdt, M. D. Malykh, L. A. Sevastianov, Yu Ying, “On the properties of numerical solutions of dynamical systems obtained using the midpoint method”, Discrete and Continuous Models and Applied Computational Science, 27:3 (2019), 242–262 | DOI
[5] A. Baddur, M. M. Gambaryan, L. Gonsales, M. D. Malykh, “O realizatsii chislennykh metodov resheniya obyknovennykh differentsialnykh uravnenii v sistemakh kompyuternoi algebry”, Programmirovanie, 2023
[6] Yu. S. Sikorskii, Elementy teorii ellipticheskikh funktsii s prilozheniyami k mekhanike, ONTI, M.-L., 1936
[7] V. V. Golubev, Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GTTI, M., 1953 | MR
[8] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, RKhD, M.–Izhevsk, 2000
[9] M. N. Lagutinskii, “Prilozhenie polyarnykh operatsii k integrirovananiyu obyknovennykh differentsialnykh uravnenii v konechnom vide”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 12 (1911), 111–243
[10] M. N. Lagutinskii, “O nekotorykh polinomakh i svyazi ikh s algebraicheskim integrirovaniem obyknovennykh differentsialnnykh algebraicheskikh uravnenii”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 13 (1912), 200–224
[11] C. Christopher, J. Llibre, J. Vitório Pereira, “Multiplicity of Invariant Algebraic Curves in Polynomial Vector Fields”, Pacific J. Math., 229:1 (2007), 63–117 | DOI | MR
[12] G. Chéze, “Computation of Darboux Polynomials and Rational First Integrals with Bounded Degree in Polynomial Time”, Journal of Complexity, 27:2 (2011), 246–262 | DOI | MR
[13] M. D. Malykh, “Ob otyskanii ratsionalnykh integralov sistem obyknovennykh differentsialnykh uravnenii po metodu M.N. Lagutinskogo”, Vestnik NIYaU MIFI, 5:24 (2016), 327–336
[14] M. D. Malykh, Yui In, “Metodika otyskaniya algebraicheskikh integralov differentsialnykh uravnenii pervogo poryadka”, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika, 26:3 (2018), 285–291