On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 17-35

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximate trajectories of dynamic systems described by ordinary differential equations with quadratic right sides, found by reversible schemes, are considered. These schemes are notable for the fact that the transition from layer to layer is described by Creomna transformations, which gives a large set of algebraic properties. On the way of generalizing the theory of Lagutinski determinants, the necessary and sufficient condition of belonging of approximate trajectories to the hypersurfaces of given linear systems was found. When approximating classical oscillators integrated in elliptic functions, the points of the approximate solution line up on phase space in some lines that are ellipitic curves. Their equations are written explicitly for the Jacobi oscillator. In the case of the Volterra-Lotka system, these points line up in lines that are not algebraic. For the Kowalevski case of solid motion, it has been proven that the points of the approximate solution cannot lie even on hypersurfaces of the 4th order.
@article{ZNSL_2022_517_a1,
     author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
     title = {On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {517},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/}
}
TY  - JOUR
AU  - E. A. Ayryan
AU  - M. M. Gambaryan
AU  - M. D. Malykh
AU  - L. A. Sevastyanov
TI  - On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 17
EP  - 35
VL  - 517
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/
LA  - ru
ID  - ZNSL_2022_517_a1
ER  - 
%0 Journal Article
%A E. A. Ayryan
%A M. M. Gambaryan
%A M. D. Malykh
%A L. A. Sevastyanov
%T On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 17-35
%V 517
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/
%G ru
%F ZNSL_2022_517_a1
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 17-35. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a1/