@article{ZNSL_2022_516_a9,
author = {M. M. Popov},
title = {Asymptotic solutions of the wave equation localized in a tabular vicinity of the geodesics and the {Fock} problem in $3D$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {253--266},
year = {2022},
volume = {516},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a9/}
}
TY - JOUR AU - M. M. Popov TI - Asymptotic solutions of the wave equation localized in a tabular vicinity of the geodesics and the Fock problem in $3D$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 253 EP - 266 VL - 516 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a9/ LA - ru ID - ZNSL_2022_516_a9 ER -
M. M. Popov. Asymptotic solutions of the wave equation localized in a tabular vicinity of the geodesics and the Fock problem in $3D$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 253-266. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a9/
[1] V. A. Fok, Problemy difraktsii i rasprostraneniya elektromagnitnykh voln, Sovetskoe radio, M., 1970
[2] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa dlya gladkikh, strogo vypuklykh poverkhnostei, vlozhennykh v $\mathbb R^3$”, Zap. nauchn. semin. POMI, 493, 2020, 301–313
[3] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa. Volny soskalzyvaniya”, Zap. nauchn. semin. POMI
[4] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. semin. POMI, 104, 1981, 195–216
[5] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Leningradskii universitet, L., 1974 | MR
[6] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Leningrad. un-et, L., 1972 | MR