A method for approximate computation of the scattering matrix in acoustic diffraction gratings
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 238-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-dimensional reflection acoustic grating is considered. We formulate and justify a method for approximate computation of the scattering matrix describing the scattering of plane waves on the periodic boundary of this grating. To this purpose, the problem in the grating is reduced to a problem in an auxiliary waveguide. The known method for computing waveguide scattering matrices is expanded to the obtained waveguide. The suggested method is not influenced by surface waves in the grating.
@article{ZNSL_2022_516_a8,
     author = {B. A. Plamenevsky and A. S. Poretsky and O. V. Sarafanov},
     title = {A method for approximate computation of the scattering matrix in acoustic diffraction gratings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--252},
     year = {2022},
     volume = {516},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a8/}
}
TY  - JOUR
AU  - B. A. Plamenevsky
AU  - A. S. Poretsky
AU  - O. V. Sarafanov
TI  - A method for approximate computation of the scattering matrix in acoustic diffraction gratings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 238
EP  - 252
VL  - 516
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a8/
LA  - ru
ID  - ZNSL_2022_516_a8
ER  - 
%0 Journal Article
%A B. A. Plamenevsky
%A A. S. Poretsky
%A O. V. Sarafanov
%T A method for approximate computation of the scattering matrix in acoustic diffraction gratings
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 238-252
%V 516
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a8/
%G ru
%F ZNSL_2022_516_a8
B. A. Plamenevsky; A. S. Poretsky; O. V. Sarafanov. A method for approximate computation of the scattering matrix in acoustic diffraction gratings. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 238-252. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a8/

[1] V. Grikurov, E. Heikkola, P. Neittaanmäki, B. Plamenevskii, “On computation of scattering matrices and on surface waves for diffraction gratings”, Numerische Mathematik, 94:2 (2003), 269–288 | DOI | MR

[2] B. A. Plamenevskii, O. V. Sarafanov, “O metode vychisleniya volnovodnykh matrits rasseyaniya v prisutstvii tochechnogo spektra”, Funkts. analiz prilozh., 48:1 (2014), 61–72 | MR

[3] P. Neittaanmyaki, B. A. Plamenevskii, O. V. Sarafanov, “Izluchenie i rasseyanie v oblastyakh s periodicheskimi volnovodami pri medlennoi stabilizatsii kharakteristik sredy”, Probl. matem. analiza, 64 (2012), 93–117

[4] B. A. Plamenevskii, O. V. Sarafanov, “O metode vychisleniya matrits rasseyaniya dlya volnovodov”, Algebra analiz, 23:1 (2011), 200–231

[5] L. Baskin, P. Neittaanmäki, B. Plamenevskii, O. Sarafanov, Resonant Tunneling: Quantum Waveguides of Variable Cross-Sections, Asymptotics, Numerics, and Applications, Lecture Notes on Numerical Methods in Engineering and Sciences, Springer, 2015 | DOI | MR

[6] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “O vychislenii volnovodnoi matritsy rasseyaniya dlya sistemy Maksvella”, Funkts. analiz prilozh., 49:1 (2015), 93–96

[7] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “Metod priblizhennogo vychisleniya volnovodnykh matrits rasseyaniya”, Uspekhi matem. nauk, 75:3 (2020), 123–182 | MR

[8] B. A. Plamenevskii, A. S. Poretskii, “O povedenii volnovodnykh matrits rasseyaniya v okrestnosti porogov”, Algebra analiz, 30:2 (2018), 188–237

[9] L. Bers, F. John, and M. Schechter, Partial Differential Equations, Interscience Publishers, New York–London–Sydney, 1964 | MR