Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann “window” in the light of mechanics of cracks
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 176-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Various asymptotic expansions are derived for eigenvalues in the discrete spectrum of the boundary-value problem for the Laplace operator in the unit strip with the Dirichlet condition on its lateral sides everywhere with exception of an interval with length $2\ell>0$ where the Neumann condition is imposed (a planar quantum waveguide with the “window”). Since the total multiplicity of the discrete spectrum grows indefinitely as $\ell\rightarrow+\infty$, there exists a sequence of the critical lengths $\{\ell^\ast_m\}$, for which the problem operator enjoys the threshold resonance. This phenomenon is characterized by the existence of a nontrivial bounded solution, that is, either trapped, or almost standing wave, and provides miscellaneous near-threshold spectral anomalies. The quality of the threshold resonances is examined and asymptotic formulas for the values $\ell^\ast_m$ are obtained for large numbers $m$. The analysis is systematically performed by means of methods from fracture mechanics.
@article{ZNSL_2022_516_a7,
     author = {S. A. Nazarov},
     title = {Asymptotic analysis of the spectrum of a quantum waveguide with a wide {Neumann} {\textquotedblleft}window{\textquotedblright} in the light of mechanics of cracks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--237},
     year = {2022},
     volume = {516},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann “window” in the light of mechanics of cracks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 176
EP  - 237
VL  - 516
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/
LA  - ru
ID  - ZNSL_2022_516_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann “window” in the light of mechanics of cracks
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 176-237
%V 516
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/
%G ru
%F ZNSL_2022_516_a7
S. A. Nazarov. Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann “window” in the light of mechanics of cracks. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 176-237. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/

[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980

[3] P. Exner, P. Šeba, M. Tater, D. Vǎnek, “Bound states and scattering in quantum waveguides coupled laterally through a boundary window”, J. Math. Phys., 37:10 (1996), 4867–4887 | DOI | MR

[4] P. Exner, S. A. Vugalter, “Asymptotics estimates for bound states in quantum waveguides coupled laterally through a narrow window”, Ann. Ins. H. Poincaré Phys. Téor., 65:1 (1996), 109–123 | MR

[5] W. Bulla, F. Gesztesy, W. Renrer, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR

[6] P. Exner, S. A. Vugalter, “Bound-state asymptotic estimate for window-coupled Dirichlet strips and layers”, J. Phys., 30:22 (1997), 7863–7878 | MR

[7] D. Borisov, P. Exner, “Exponential splitting of bound states in a waveguide with a pair of distant windows”, J. Phys. A. Math. Gen., 37 (2004), 3411–3428 | DOI | MR

[8] D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a the two-dimensional strip”, J. Math. Phys., 43:12 (2008), 6265–6278 | DOI | MR

[9] D. Borisov, T. Ekholm, H. Kovarik, “Spectrum of the magnetic Schrödinger operator in a waveguide with combined boundary conditions”, Ann. Henri Poincaré, 6:2 (2005), 327–342 | DOI | MR

[10] D. I. Borisov, “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Matem. sbornik, 197:4 (2006), 3–32

[11] D. Borisov, P. Exner, “Distant perturbation asymptotics in window-coupled waveguides. I. The nonthreshold case”, J. Math. Phys., 47:11 (2006), 113502-1–113502-24 | DOI | MR

[12] D. Borisov, P. Exner, A. Golovina, “Tunneling resonances in systems without a classical trapping”, J. Math. Phys., 54 (2013), 012102 | DOI | MR

[13] S. A. Nazarov, “Asimptotika sobstvennogo chisla na nepreryvnom spektre dvukh kvantovykh volnovodov, soedinennykh uzkimi oknami”, Matem. zametki, 93:2 (2013), 227–245 | MR

[14] G. P. Cherepanov, Mekhanika khrupkogo razrusheniya, Sudostroenie, L., 1990

[15] L. I. Slepyan, Mekhanika treschin, Sudostroenie, L., 1990

[16] V. M. Pestrikov, E. M. Morozov, Mekhanika razrusheniya tverdykh tel, Kurs lektsii, Professiya, SPb, 2002

[17] S. A. Nazarov, “Lokalnaya ustoichivost i neustoichivost treschin normalnogo otryva”, Mekhanika tverdogo tela, 1988, no. 3, 124–129

[18] S. A. Nazarov, O. R. Polyakova, “Kriterii razrusheniya, asimptoticheskie usloviya v vershinakh treschin i samosopryazhennye rasshireniya operatora Lame”, Trudy moskovskogo matem. obschestva, 57, 1996, 16–75

[19] S. A. Nazarov, “Treschina na styke anizotropnykh tel. Singulyarnosti napryazhenii i invariantnye integraly”, Prikladnaya matem. i mekhanika, 62:3 (1998), 489–502 | MR

[20] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers; small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR

[21] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI | MR

[22] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resomamnces for waveguide junctions”, J. of Math. Anal. and Appl., 449:1 (2017), 907–925 | DOI | MR

[23] S. A. Nazarov, “Anomalii rasseyaniya akusticheskikh voln vblizi tochek otsechki nepreryvnogo spektra (obzor)”, Akusticheskii zhurnal, 66:5 (2020), 489–508

[24] S. A. Nazarov, “Porogovye rezonansy i virtualnye urovni v spektre tsilindricheskikh i periodicheskikh volnovodov”, Izvestiya RAN. Seriya matem., 84:6 (2020), 73–130 | MR

[25] F. L. Bakharev, S. A. Nazarov, “Kriterii otsutstviya i nlichiya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz, 32:6 (2020), 1–23

[26] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Birkhäuser Verlag, Basel, 2000 | MR

[27] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[28] S. A. Nazarov, “Asimptotika sobstvennykh znachenii zadachi Steklova na sochlenenii oblastei razlichnykh predelnykh razmernostei”, Zhurnal vychisl. matem. i matem. fiz., 52:11 (2013), 2033–2049

[29] S. A. Nazarov, “Modelirovanie singulyarno vozmuschennoi spektralnoi zadachi pri pomoschi samosopryazhennykh rasshirenii operatorov predelnykh zadach”, Funktsionalnyi analiz i ego prilozheniya, 49:1 (2015), 31–48

[30] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[31] S. A. Nazarov, “Ob asimptotike po parametru resheniya ellipticheskoi kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differentsialnye uravneniya i ikh primeneniya, 30 (1981), 27–46

[32] S. A. Nazarov, “The Navier-Stokes problem in thin or long tubes with periodically varying cross-section”, Z. Angew. Math. Mech., 80:9 (2000), 591–612 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[33] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967

[34] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[35] S. A. Nazarov, “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zhurnal, 51:5 (2010), 1086–1101 | MR

[36] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funktsionalnyi analiz i ego prilozheniya, 47:3 (2013), 37–53 | MR

[37] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tipogr. Ulrikha i Shultse, Odessa, 1874

[38] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Phil. Trans. of the Royal Society of London, 175 (1984), 343–361

[39] L. I. Mandelshtam, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Sb. trudov, v. 2, Izd-vo AN SSSR, M., 1947 | MR

[40] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979

[41] S. A. Nazarov, B. A. Plamenevskii, “Ob usloviyakh izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Doklady AN SSSR, 311:3 (1990), 532–536

[42] S. A. Nazarov, “Ogranichennye resheniya v T-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zhurnal vychisl. matem. i matem. fiz., 54:8 (2014), 1299–1318

[43] R. Mitra, S. Li, Analiticheskie metody teorii volnovodov, Mir, M., 1974

[44] C. H. Wilcox, Scattering Theory for Diffraction Gratings, Applied Mathematical Sciences Series, 46, Springer, Singapure, 1997 | MR

[45] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izvestiya VUZ'ov. Matem., 1962, no. 5, 11–21

[46] F. Rellich, “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebiete”, Jahresber. Dtsch. Math.-Ver., 53:1 (1943), 57–65 | MR

[47] L. Bers, F. John, M. Schehter, Partial differential equations, Interscience, New York, 1964 | MR

[48] S. A. Nazarov, “Volnovod s dvoinym porogovym rezonansom na prostom poroge”, Matem. sbornikyu, 211:8 (2020), 20–67 | MR

[49] V.A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1967, 219–292

[50] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[51] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Q. J. Mech Appl Math., 53:3 (2000), 429–447 | DOI | MR

[52] S. A. Nazarov, “O vozmuschenii sobstvennogo chisla na nepreryvnom spektre volnovoda s nesimmetrichnym prepyatstviem”, Doklady RAN, 440:3 (2011), 317–322

[53] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1953), 3–122

[54] Yu. A. Romashev, S. A. Nazarov, “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu dvumya kollinearnymi treschinami”, Izvestiya AN ArmSSR. Mekhanika, 1982, no. 4, 30–40

[55] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy Sankt-Peterburg. matem. o-va, 5, 112–183

[56] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teoreticheskaya i matematicheskaya fizika, 167:2 (2011), 239–262

[57] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR

[58] L. Chesnel, S.A. Nazarov, J. Taskinen, “Surface waves in a channel with thin tunnels at the bottom: non-reflecting underwater topography”, Asymptotic Analysis, 118:1, 2 (2020), 81–122 | DOI | MR