Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann ``window'' in the light of mechanics of cracks
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 176-237

Voir la notice de l'article provenant de la source Math-Net.Ru

Various asymptotic expansions are derived for eigenvalues in the discrete spectrum of the boundary-value problem for the Laplace operator in the unit strip with the Dirichlet condition on its lateral sides everywhere with exception of an interval with length $2\ell>0$ where the Neumann condition is imposed (a planar quantum waveguide with the “window”). Since the total multiplicity of the discrete spectrum grows indefinitely as $\ell\rightarrow+\infty$, there exists a sequence of the critical lengths $\{\ell^\ast_m\}$, for which the problem operator enjoys the threshold resonance. This phenomenon is characterized by the existence of a nontrivial bounded solution, that is, either trapped, or almost standing wave, and provides miscellaneous near-threshold spectral anomalies. The quality of the threshold resonances is examined and asymptotic formulas for the values $\ell^\ast_m$ are obtained for large numbers $m$. The analysis is systematically performed by means of methods from fracture mechanics.
@article{ZNSL_2022_516_a7,
     author = {S. A. Nazarov},
     title = {Asymptotic analysis of the spectrum of a quantum waveguide with a wide {Neumann} ``window'' in the light of mechanics of cracks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--237},
     publisher = {mathdoc},
     volume = {516},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann ``window'' in the light of mechanics of cracks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 176
EP  - 237
VL  - 516
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/
LA  - ru
ID  - ZNSL_2022_516_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann ``window'' in the light of mechanics of cracks
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 176-237
%V 516
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/
%G ru
%F ZNSL_2022_516_a7
S. A. Nazarov. Asymptotic analysis of the spectrum of a quantum waveguide with a wide Neumann ``window'' in the light of mechanics of cracks. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 176-237. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a7/