Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 135-175
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In $ L_2(\mathbb{R}^d) $, we consider a second-order elliptic differential operator $A_{\varepsilon} = \mathbf{D}^* g(\mathbf{x}/\varepsilon) \mathbf{D} + \varepsilon^{-2}p(\mathbf{x}/\varepsilon),$ $ \varepsilon > 0 $, with periodic coefficients. For small $ \varepsilon $, we study the behavior of the semigroup $ e^{-A_{\varepsilon}t} $, $ t > 0 $, cut by the spectral projection of the operator $ A_{\varepsilon} $ for the interval $ [\varepsilon^{-2}\lambda_{+}, +\infty) $. Here $ \varepsilon^{-2}\lambda_{+} $ is the right edge of a spectral gap for the operator $ A_{\varepsilon} $. We obtain approximation for the 'cut semigroup' in the operator norm in $L_2(\mathbb{R}^d)$ with error $O(\varepsilon)$, and also a more accurate approximation with error $O(\varepsilon^2)$ (after singling out the factor $e^{-t \lambda_{+} / \varepsilon^2}$). The results are applied to homogenization of the Cauchy problem $\partial_t v_\varepsilon = - A_\varepsilon v_\varepsilon$, $v_\varepsilon\vert_{t=0} = f_\varepsilon$, with the initial data $f_\varepsilon$ from a special class.
@article{ZNSL_2022_516_a6,
     author = {A. A. Mishulovich},
     title = {Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--175},
     year = {2022},
     volume = {516},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/}
}
TY  - JOUR
AU  - A. A. Mishulovich
TI  - Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 135
EP  - 175
VL  - 516
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/
LA  - ru
ID  - ZNSL_2022_516_a6
ER  - 
%0 Journal Article
%A A. A. Mishulovich
%T Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 135-175
%V 516
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/
%G ru
%F ZNSL_2022_516_a6
A. A. Mishulovich. Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 135-175. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/

[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[2] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., 1978 | MR

[3] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[4] M. Sh. Birman, T. A. Suslina, “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR

[5] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[6] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[7] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[8] T. A. Suslina, “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. analiz i ego pril., 38:4 (2004), 86–90 | MR

[9] T. A. Suslina, “Homogenization of a periodic parabolic Sauchy problem”, Amer. Math. Soc. Transl. (2), 220 (2007), 201–233 | MR

[10] E. S. Vasilevskaya, “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchete korrektora”, Algebra i analiz, 21:1 (2009), 3–60 | MR

[11] T. A. Suslina, “Homogenization of a periodic parabolic Sauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR

[12] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR

[13] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR

[14] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR

[15] V. V. Zhikov, S. E. Pastukhova, “Ob operatornykh otsenkakh v teorii usredneniya”, Uspekhi matem. nauk, 71:3 (2016), 27–122 | MR

[16] M. Sh. Birman, “O protsedure usredneniya dlya periodicheskikh operatorov v okrestnosti kraya vnutrennei lakuny”, Algebra i analiz, 15:4 (2003), 61–71

[17] T. A. Suslina, A. A. Kharin, “Usrednenie s uchetom korrektora dlya periodicheskogo ellipticheskogo operatora vblizi kraya vnutrennei lakuny”, Problemy matematicheskogo analiza, 41 (2009), 127–141

[18] M. Sh. Birman, T. A. Suslina, “Usrednenie mnogomernogo periodicheskogo ellipticheskogo operatora v okrestnosti kraya vnutrennei lakuny”, Zap. nauch. semin. POMI, 318, 2004, 60–74

[19] T. A. Suslina, A. A. Kharin, “Usrednenie s uchetom korrektora dlya mnogomernogo periodicheskogo ellipticheskogo operatora vblizi kraya vnutrennei lakuny”, Problemy matematicheskogo analiza, 59 (2011), 177–193

[20] A. R. Akhmatova, E. S. Aksenova, V. A. Sloushch, T. A. Suslina, “Homogenization of the parabolic equation with periodic coefficients at the edge of a spectral gap”, Complex Variables and Elliptic Equations, 67:3 (2022), 523–555 | DOI | MR

[21] M. Sh. Birman, “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization: Adv. Partial Differential Equations, Math. Top., 8, Akademie Verlag, Berlin, 1995, 334–352 | MR

[22] M. Sh. Birman, “Diskretnyi spektr v lakunakh vozmuschennogo periodicheskogo operatora Shredingera. II. Neregulyarnye vozmuscheniya”, Algebra i analiz, 9:6 (1997), 62–89

[23] M. M. Skriganov, “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122

[24] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR