Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 135-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In $ L_2(\mathbb{R}^d) $, we consider a second-order elliptic differential operator $A_{\varepsilon} = \mathbf{D}^* g(\mathbf{x}/\varepsilon) \mathbf{D} + \varepsilon^{-2}p(\mathbf{x}/\varepsilon),$ $ \varepsilon > 0 $, with periodic coefficients. For small $ \varepsilon $, we study the behavior of the semigroup $ e^{-A_{\varepsilon}t} $, $ t > 0 $, cut by the spectral projection of the operator $ A_{\varepsilon} $ for the interval $ [\varepsilon^{-2}\lambda_{+}, +\infty) $. Here $ \varepsilon^{-2}\lambda_{+} $ is the right edge of a spectral gap for the operator $ A_{\varepsilon} $. We obtain approximation for the 'cut semigroup' in the operator norm in $L_2(\mathbb{R}^d)$ with error $O(\varepsilon)$, and also a more accurate approximation with error $O(\varepsilon^2)$ (after singling out the factor $e^{-t \lambda_{+} / \varepsilon^2}$). The results are applied to homogenization of the Cauchy problem $\partial_t v_\varepsilon = - A_\varepsilon v_\varepsilon$, $v_\varepsilon\vert_{t=0} = f_\varepsilon$, with the initial data $f_\varepsilon$ from a special class.
			
            
            
            
          
        
      @article{ZNSL_2022_516_a6,
     author = {A. A. Mishulovich},
     title = {Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--175},
     publisher = {mathdoc},
     volume = {516},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/}
}
                      
                      
                    TY - JOUR AU - A. A. Mishulovich TI - Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 135 EP - 175 VL - 516 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/ LA - ru ID - ZNSL_2022_516_a6 ER -
%0 Journal Article %A A. A. Mishulovich %T Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 135-175 %V 516 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/ %G ru %F ZNSL_2022_516_a6
A. A. Mishulovich. Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 135-175. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a6/