@article{ZNSL_2022_516_a2,
author = {M. N. Demchenko},
title = {Asymptotic properties of solutions to a certain ultrahyperbolic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--64},
year = {2022},
volume = {516},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/}
}
M. N. Demchenko. Asymptotic properties of solutions to a certain ultrahyperbolic equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 40-64. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/
[1] P. D. Lax, R. S. Phillips, Scattering Theory, Academic Press, New York-London, 1967 ; P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971 | MR
[2] A. S. Blagoveschenskii, “O nekotorykh novykh korrektnykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln (1970), Nauka, L., 1971, 29–35
[3] H. E. Moses, R. T. Prosser, “Acoustic and electromagnetic bullets: derivation of new exact solutions of the acoustic and Maxwell's equations”, SIAM J. Appl. Math., 50:5 (1990), 1325–1340 | DOI | MR
[4] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681
[5] M. I. Belishev, A. F. Vakulenko, “Ob odnoi zadache upravleniya dlya volnovogo uravneniya v ${\mathbb R}^3$”, Zap. nauchn. semin. POMI, 332, 2006, 19–37
[6] A. B. Plachenov, “Vyrazhenie energii akusticheskogo, elektromagnitnogo i uprugogo volnovogo polya cherez ego asimptotiku na bolshikh vremenakh i rasstoyaniyakh”, Zap. nauchn. semin. POMI, 493, 2020, 269–287 | MR
[7] A. S. Blagoveschenskii, “O kharakteristicheskoi zadache dlya ultragiperbolicheskogo uravneniya”, Matem. sb., 63:105:1 (1964), 137–168
[8] Georges de Rham, “Solution élémentaire d'opérateurs différentiels du second ordre”, Annales de l'institut Fourier, 8 (1958), 337–366 | DOI | MR
[9] V. M. Babich, “Anzatts Adamara, ego analogi, obobscheniya, prilozheniya”, Algebra i analiz, 3:5 (1991), 1–37
[10] N. Ortner, P. Wagner, “Fourier transformation of O(p, q)-invariant distributions. Fundamental solutions of ultra-hyperbolic operators”, J. Math. Analys. Applic., 450 (2017), 262–292 | DOI | MR