Asymptotic properties of solutions to a certain ultrahyperbolic equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 40-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a certain ultrahyperbolic equation in a Euclidean space being a generalization of Klein–Gordon–Fock equation. The behavior of solutions at points tending to infinity along timelike directions is studied. We examine the issue of existence of solutions possessing given asymptotic properties at infinity.
@article{ZNSL_2022_516_a2,
     author = {M. N. Demchenko},
     title = {Asymptotic properties of solutions to a certain ultrahyperbolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--64},
     publisher = {mathdoc},
     volume = {516},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - Asymptotic properties of solutions to a certain ultrahyperbolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 40
EP  - 64
VL  - 516
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/
LA  - ru
ID  - ZNSL_2022_516_a2
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T Asymptotic properties of solutions to a certain ultrahyperbolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 40-64
%V 516
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/
%G ru
%F ZNSL_2022_516_a2
M. N. Demchenko. Asymptotic properties of solutions to a certain ultrahyperbolic equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 40-64. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/