Asymptotic properties of solutions to a certain ultrahyperbolic equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 40-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a certain ultrahyperbolic equation in a Euclidean space being a generalization of Klein–Gordon–Fock equation. The behavior of solutions at points tending to infinity along timelike directions is studied. We examine the issue of existence of solutions possessing given asymptotic properties at infinity.
@article{ZNSL_2022_516_a2,
     author = {M. N. Demchenko},
     title = {Asymptotic properties of solutions to a certain ultrahyperbolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--64},
     year = {2022},
     volume = {516},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - Asymptotic properties of solutions to a certain ultrahyperbolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 40
EP  - 64
VL  - 516
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/
LA  - ru
ID  - ZNSL_2022_516_a2
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T Asymptotic properties of solutions to a certain ultrahyperbolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 40-64
%V 516
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/
%G ru
%F ZNSL_2022_516_a2
M. N. Demchenko. Asymptotic properties of solutions to a certain ultrahyperbolic equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 40-64. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a2/

[1] P. D. Lax, R. S. Phillips, Scattering Theory, Academic Press, New York-London, 1967 ; P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971 | MR

[2] A. S. Blagoveschenskii, “O nekotorykh novykh korrektnykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln (1970), Nauka, L., 1971, 29–35

[3] H. E. Moses, R. T. Prosser, “Acoustic and electromagnetic bullets: derivation of new exact solutions of the acoustic and Maxwell's equations”, SIAM J. Appl. Math., 50:5 (1990), 1325–1340 | DOI | MR

[4] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[5] M. I. Belishev, A. F. Vakulenko, “Ob odnoi zadache upravleniya dlya volnovogo uravneniya v ${\mathbb R}^3$”, Zap. nauchn. semin. POMI, 332, 2006, 19–37

[6] A. B. Plachenov, “Vyrazhenie energii akusticheskogo, elektromagnitnogo i uprugogo volnovogo polya cherez ego asimptotiku na bolshikh vremenakh i rasstoyaniyakh”, Zap. nauchn. semin. POMI, 493, 2020, 269–287 | MR

[7] A. S. Blagoveschenskii, “O kharakteristicheskoi zadache dlya ultragiperbolicheskogo uravneniya”, Matem. sb., 63:105:1 (1964), 137–168

[8] Georges de Rham, “Solution élémentaire d'opérateurs différentiels du second ordre”, Annales de l'institut Fourier, 8 (1958), 337–366 | DOI | MR

[9] V. M. Babich, “Anzatts Adamara, ego analogi, obobscheniya, prilozheniya”, Algebra i analiz, 3:5 (1991), 1–37

[10] N. Ortner, P. Wagner, “Fourier transformation of O(p, q)-invariant distributions. Fundamental solutions of ultra-hyperbolic operators”, J. Math. Analys. Applic., 450 (2017), 262–292 | DOI | MR