Greeping waves in the chadow area of the $3D$ Fock problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 267-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is direct extension of the article [5] devoted to the exploration of the Fock’s problem in 3D case. Namely, in the paper propagation of the creeping waves in the shadow area of the diffraction obstacle is studied. The creeping waves stem from the reflected wave in the solution of the problem in a vicinity of the light-shadow boundary on the surface of the diffraction obstacle and then they are prolonged into shadow area. The main results of the paper are the initial data for the prolongation procedure.
@article{ZNSL_2022_516_a10,
     author = {M. M. Popov},
     title = {Greeping waves in the chadow area of the $3D$ {Fock} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--274},
     year = {2022},
     volume = {516},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a10/}
}
TY  - JOUR
AU  - M. M. Popov
TI  - Greeping waves in the chadow area of the $3D$ Fock problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 267
EP  - 274
VL  - 516
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a10/
LA  - ru
ID  - ZNSL_2022_516_a10
ER  - 
%0 Journal Article
%A M. M. Popov
%T Greeping waves in the chadow area of the $3D$ Fock problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 267-274
%V 516
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a10/
%G ru
%F ZNSL_2022_516_a10
M. M. Popov. Greeping waves in the chadow area of the $3D$ Fock problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 267-274. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a10/

[1] M. M. Popov, “On theory of the surface wave propagation on a smooth, strictly convex surface embeded in $\mathbb R^3$”, Proceedings of DD 2019 Conference, 2019, 159–162 | MR

[2] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa dlya gladkikh, strogo vypuklykh poverkhnostei, vlozhennykh v $\mathbb R^3$”, Zap. nauchn. semin. POMI, 493, 2020, 301–313

[3] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa. Volny soskalzyvaniya”, Zap. nauchn. semin. POMI, 506, 2021, 210–222

[4] V. A. Fok, Problemy difraktsii i rasprostraneniya elektromagnitnykh voln, Sovetskoe radio, M., 1970

[5] M. M. Popov, “Sosredotochennye v okrestnosti geodezicheskikh resheniya i zadacha V. A. Foka v $3D$”, Zap. nauchn. semin. POMI, 516, 2022, 253–266

[6] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. semin. LOMI, 104, 1981, 195–216

[7] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo Leningradskogo un-ta, L., 1974 | MR