@article{ZNSL_2022_516_a10,
author = {M. M. Popov},
title = {Greeping waves in the chadow area of the $3D$ {Fock} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {267--274},
year = {2022},
volume = {516},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a10/}
}
M. M. Popov. Greeping waves in the chadow area of the $3D$ Fock problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 267-274. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a10/
[1] M. M. Popov, “On theory of the surface wave propagation on a smooth, strictly convex surface embeded in $\mathbb R^3$”, Proceedings of DD 2019 Conference, 2019, 159–162 | MR
[2] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa dlya gladkikh, strogo vypuklykh poverkhnostei, vlozhennykh v $\mathbb R^3$”, Zap. nauchn. semin. POMI, 493, 2020, 301–313
[3] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa. Volny soskalzyvaniya”, Zap. nauchn. semin. POMI, 506, 2021, 210–222
[4] V. A. Fok, Problemy difraktsii i rasprostraneniya elektromagnitnykh voln, Sovetskoe radio, M., 1970
[5] M. M. Popov, “Sosredotochennye v okrestnosti geodezicheskikh resheniya i zadacha V. A. Foka v $3D$”, Zap. nauchn. semin. POMI, 516, 2022, 253–266
[6] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. semin. LOMI, 104, 1981, 195–216
[7] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo Leningradskogo un-ta, L., 1974 | MR