Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 20-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present work the spectral structure of realizations of a matrix three-term Sturm-Liouville operator \begin{equation*} \mathcal{L}(P,Q,R)y:=R^{-1}(x)\bigl(-(P(x)y')'+Q(x)y\bigr), y=(y_1,\ldots,y_m)^{\top}, \end{equation*} with singular potential $Q( \cdot ) = Q( \cdot )^*$ on the half-line and line is investigated. It is shown that under certain conditions on the coefficients $P( \cdot )$ and $R( \cdot )$ the Dirichlet realization $L^D$ (and other self-adjoint realizations) in the case of $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity $m$. In particular, Schrödinger operator with matrix potential $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity $m$. This result is applied to the Sturm–Liouville expression $\mathcal{L}(P,Q,R)$ with delta-interactions on the line $\mathbb{R}$. It is shown that if the minimal operator $L := L_{\min }$ in $L^2(\mathbb{R};R;\mathbb{C}^m)$ is self-adjoint, then the non-negative spectrum of the operator $L$ is Lebesgue of constant multiplicity $2m$ whenever $Q( \cdot )\mathbf{1}_{\mathbb{R}_+}(\cdot) \in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$. In particular, if the minimal Schrödinger operator $\mathbf{H}$ on the line with potential matrix $Q( \cdot )=Q_1( \cdot )+\sum\limits_{k\in\mathbb{Z}}\alpha_k\delta( \cdot -x_k)$, is selfadjoint, $\mathbf{H} = \mathbf{H}^*$, then its non-negative spectrum is Lebesgue one of constant multiplicity $2m$ whenever $Q_1( \cdot )\mathbf{1}_{\mathbb{R}_+}\in L^1(\mathbb{R}_+;\mathbb{C}^{m\times m})$ and $\sum\limits_{k=1}^{\infty}|\alpha_k|<\infty$.
@article{ZNSL_2022_516_a1,
     author = {Ya. I. Granovskiy and M. M. Malamud},
     title = {Sturm-Liouville operators with $W^{-1,1}$-matrix potentials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--39},
     year = {2022},
     volume = {516},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/}
}
TY  - JOUR
AU  - Ya. I. Granovskiy
AU  - M. M. Malamud
TI  - Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 20
EP  - 39
VL  - 516
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/
LA  - ru
ID  - ZNSL_2022_516_a1
ER  - 
%0 Journal Article
%A Ya. I. Granovskiy
%A M. M. Malamud
%T Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 20-39
%V 516
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/
%G ru
%F ZNSL_2022_516_a1
Ya. I. Granovskiy; M. M. Malamud. Sturm-Liouville operators with $W^{-1,1}$-matrix potentials. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 20-39. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/

[1] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, v. II, Vischa shkola, Kharkov, 1978, 288 pp. | MR

[2] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Nauk. dumka, K., 1984, 284 pp. | MR

[3] V. A. Derkach, M. M. Malamud, Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi, Institut matematiki NAN Ukrainy, K., 2017, 573 pp.

[4] M. M. Malamud, “O singulyarnom spektre konechnomernykh vozmuschenii (k teorii Aronshaina-Donokhyu-Katsa)”, DAN, 487:4 (2019), 365–369

[5] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp.

[6] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma-Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912

[7] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma-Liuvillya s potentsialami-raspredeleniyami”, Trudy Moskovskogo matematicheskogo obschestva, 64 (2003), 159–212

[8] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. I, Izdatelstvo inostrannoi literatury, M., 1960, 277 pp.

[9] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Academic Press, 2003 ; Elsevier Science, Vancouver | MR

[10] T. Aktosun, R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation, Applied Mathematical Sciences, 203, Springer Verlag, New York, 2020, 637 pp. | MR

[11] S. Albeverio., F. Gesztesy., R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea Publ., 2005 | MR

[12] S. Albeverio, P. Kurasov, Singular perturbations of differential operators and Schrödinger type operators, Cambridge Univ. Press, 2000 | MR

[13] V. Derkach, M. Malamud, “Generalised resolvents and the boundary value problems for Hermitian Operators with gaps”, J. Funct. Anal., 95 (1991), 1–95 | DOI | MR

[14] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl-Titchmarsh theory for Sturm-Liouville operators with distribution potentials”, J. Opuscula Math., 33:3 (2013), 467–563 | DOI | MR

[15] P. Exner, “Appendix in [11]”, Solvable models in quantum mechanics, Sec. Edition, eds. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, AMS Chelsea Publ., 2005 | MR

[16] Ya. Granovskyi, M. Malamud, H. Neidhardt, “Non-compact qiantum graphs with summable matrix potentials”, Ann. Henri Poincaré, 22 (2021), 1–47 | DOI | MR

[17] Ya. Granovskyi, M. Malamud, H. Neidhardt, A. Posilicano, “To the spectral theory of vector-valued Sturm-Liouville operators with summable potentials and point interactions”, Func. Anal. and Oper. Theory for Quantum Phys., Pavel Exner Anniversary V., EMS Series of Congress Reports, 12, 2017, 271–313 | DOI | MR

[18] A. Kostenko, M. Malamud, “1–D Schrödinger operators with local point interactions: a review”, Spectral Analysis, Differential Equations, and Mathematical Physics, Proceedings of Symposia in Pure Mathematics, 87, eds. H. Holden et al., Amer. Math. Soc., 2013, 235–262 | DOI | MR

[19] M. Malamud, H. Neidhardt, “On the unitary equivalence of absolutely continuous parts of self-adjoint extensions”, J. Funct. Anal., 260:3 (2011), 613–638 | DOI | MR

[20] C. Shubin Christ, G. Stolz, “Spectral theory of one-dimensional Schrödinger operators with point interactions”, J. Math. Anal. Appl., 184 (1994), 491–516 | DOI | MR

[21] R. Weder, “Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions”, J. Math. Phys., 56 (2015), 092103 ; Erratum: J. Math. Phys., 60 (2019), 019901 | DOI | MR | DOI | MR