Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 20-39

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work the spectral structure of realizations of a matrix three-term Sturm-Liouville operator \begin{equation*} \mathcal{L}(P,Q,R)y:=R^{-1}(x)\bigl(-(P(x)y')'+Q(x)y\bigr), y=(y_1,\ldots,y_m)^{\top}, \end{equation*} with singular potential $Q( \cdot ) = Q( \cdot )^*$ on the half-line and line is investigated. It is shown that under certain conditions on the coefficients $P( \cdot )$ and $R( \cdot )$ the Dirichlet realization $L^D$ (and other self-adjoint realizations) in the case of $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity $m$. In particular, Schrödinger operator with matrix potential $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity $m$. This result is applied to the Sturm–Liouville expression $\mathcal{L}(P,Q,R)$ with delta-interactions on the line $\mathbb{R}$. It is shown that if the minimal operator $L := L_{\min }$ in $L^2(\mathbb{R};R;\mathbb{C}^m)$ is self-adjoint, then the non-negative spectrum of the operator $L$ is Lebesgue of constant multiplicity $2m$ whenever $Q( \cdot )\mathbf{1}_{\mathbb{R}_+}(\cdot) \in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$. In particular, if the minimal Schrödinger operator $\mathbf{H}$ on the line with potential matrix $Q( \cdot )=Q_1( \cdot )+\sum\limits_{k\in\mathbb{Z}}\alpha_k\delta( \cdot -x_k)$, is selfadjoint, $\mathbf{H} = \mathbf{H}^*$, then its non-negative spectrum is Lebesgue one of constant multiplicity $2m$ whenever $Q_1( \cdot )\mathbf{1}_{\mathbb{R}_+}\in L^1(\mathbb{R}_+;\mathbb{C}^{m\times m})$ and $\sum\limits_{k=1}^{\infty}|\alpha_k|\infty$.
@article{ZNSL_2022_516_a1,
     author = {Ya. I. Granovskiy and M. M. Malamud},
     title = {Sturm-Liouville operators with $W^{-1,1}$-matrix potentials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--39},
     publisher = {mathdoc},
     volume = {516},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/}
}
TY  - JOUR
AU  - Ya. I. Granovskiy
AU  - M. M. Malamud
TI  - Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 20
EP  - 39
VL  - 516
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/
LA  - ru
ID  - ZNSL_2022_516_a1
ER  - 
%0 Journal Article
%A Ya. I. Granovskiy
%A M. M. Malamud
%T Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 20-39
%V 516
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/
%G ru
%F ZNSL_2022_516_a1
Ya. I. Granovskiy; M. M. Malamud. Sturm-Liouville operators with $W^{-1,1}$-matrix potentials. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 52, Tome 516 (2022), pp. 20-39. http://geodesic.mathdoc.fr/item/ZNSL_2022_516_a1/