On a problem of infinite divisibility
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 156-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(t)$ be a characteristic function. The question on infinite divisibility of $g_{2k}(t)=f^{(2k)}(t)/f^{(2k)}(0)$ is considered. There are given the condition for that function not to be infinite divisible. Some examples of infinite divisibility of $g_{2k}(t)$ are given.
@article{ZNSL_2022_515_a9,
     author = {L. B. Klebanov},
     title = {On a problem of infinite divisibility},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--161},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a9/}
}
TY  - JOUR
AU  - L. B. Klebanov
TI  - On a problem of infinite divisibility
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 156
EP  - 161
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a9/
LA  - ru
ID  - ZNSL_2022_515_a9
ER  - 
%0 Journal Article
%A L. B. Klebanov
%T On a problem of infinite divisibility
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 156-161
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a9/
%G ru
%F ZNSL_2022_515_a9
L. B. Klebanov. On a problem of infinite divisibility. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 156-161. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a9/