Energy efficient approximations of Brownian Sheet
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 141-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a random field $B(t_1, \ldots, t_d), t_i \in [0, T_i]$ with a reproducing kernel $H$ and any function $f\in H$ define approximation error as $$ \mathcal{E}_{\bar T}(f, B) =\int\limits_0^{T_1}\ldots \int\limits_0^{T_d} (f(\bar t) - B(\bar t))^2 d\bar t + \lambda^2 \|f\|_{H}^2. $$ The first term defines proximity of $f$ to $B$ and the second one defines energy efficiency of $f$. Coefficient $\lambda$ allows to balance between these two parts. The best approximation is $$ f_{\mathrm{opt}} = \underset{f\in H}{\arg\min}\, \mathcal{E}_{\bar T}(f, B). $$ We prove the law of large numbers on convergence of optimal approximation error of Brownian Sheet in $L^2$ and almost surely.
@article{ZNSL_2022_515_a8,
     author = {N. A. Karagodin},
     title = {Energy efficient approximations of {Brownian} {Sheet}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--155},
     year = {2022},
     volume = {515},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/}
}
TY  - JOUR
AU  - N. A. Karagodin
TI  - Energy efficient approximations of Brownian Sheet
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 141
EP  - 155
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/
LA  - ru
ID  - ZNSL_2022_515_a8
ER  - 
%0 Journal Article
%A N. A. Karagodin
%T Energy efficient approximations of Brownian Sheet
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 141-155
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/
%G ru
%F ZNSL_2022_515_a8
N. A. Karagodin. Energy efficient approximations of Brownian Sheet. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 141-155. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/

[1] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probab. Statist., Kluwer, 2004 | MR

[2] I. Ibragimov, Z. Kabluchko, M. Lifshits, “Some extensions of linear approximation and prediction problems for stationary processes”, Stoch. Proc. Appl., 129 (2019), 2758–2782 | DOI | MR

[3] Z. Kabluchko, M. Lifshits, “Least energy approximations for processes with stationary increments”, J. Theor. Probab., 30:1 (2017), 268–296 | DOI | MR

[4] M. Kanagawa, P. Hennig, D. Sejdinovic, B. K. Sriperumbudur, Gaussian Processes and Kernel Methods: A Review on Connect. Equivalences, arXiv: 1807.02582

[5] M. Lifshits, A. Siuniaev, “Energy of taut strings accompanying random walk”, Probab. Math. Stat., 41:1 (2021), 9–23 | MR

[6] M. Lifshits, E. Setterqvist, “Energy of taut string accompanying Wiener process”, Stoch. Proc. Appl., 125 (2015), 401–427 | DOI | MR

[7] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006 | MR

[8] D. I. Blinova, M. A. Lifshits, “Energiya natyanutykh strun, soprovozhdayuschikh vinerovskii protsess i sluchainoe bluzhdanie v polose peremennoi shiriny”, Zap. nauchn. semin. POMI, 495, 64–86

[9] M. A. Lifshits, Z. A. Kabluchko, “Adaptivnaya energeticheski effektivnaya approksimatsiya statsionarnykh protsessov”, Izv. RAN, ser. Matemat., 83:5 (2019), 27–52 | MR