@article{ZNSL_2022_515_a8,
author = {N. A. Karagodin},
title = {Energy efficient approximations of {Brownian} {Sheet}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--155},
year = {2022},
volume = {515},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/}
}
N. A. Karagodin. Energy efficient approximations of Brownian Sheet. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 141-155. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/
[1] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probab. Statist., Kluwer, 2004 | MR
[2] I. Ibragimov, Z. Kabluchko, M. Lifshits, “Some extensions of linear approximation and prediction problems for stationary processes”, Stoch. Proc. Appl., 129 (2019), 2758–2782 | DOI | MR
[3] Z. Kabluchko, M. Lifshits, “Least energy approximations for processes with stationary increments”, J. Theor. Probab., 30:1 (2017), 268–296 | DOI | MR
[4] M. Kanagawa, P. Hennig, D. Sejdinovic, B. K. Sriperumbudur, Gaussian Processes and Kernel Methods: A Review on Connect. Equivalences, arXiv: 1807.02582
[5] M. Lifshits, A. Siuniaev, “Energy of taut strings accompanying random walk”, Probab. Math. Stat., 41:1 (2021), 9–23 | MR
[6] M. Lifshits, E. Setterqvist, “Energy of taut string accompanying Wiener process”, Stoch. Proc. Appl., 125 (2015), 401–427 | DOI | MR
[7] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006 | MR
[8] D. I. Blinova, M. A. Lifshits, “Energiya natyanutykh strun, soprovozhdayuschikh vinerovskii protsess i sluchainoe bluzhdanie v polose peremennoi shiriny”, Zap. nauchn. semin. POMI, 495, 64–86
[9] M. A. Lifshits, Z. A. Kabluchko, “Adaptivnaya energeticheski effektivnaya approksimatsiya statsionarnykh protsessov”, Izv. RAN, ser. Matemat., 83:5 (2019), 27–52 | MR