Energy efficient approximations of Brownian Sheet
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 141-155

Voir la notice de l'article provenant de la source Math-Net.Ru

For a random field $B(t_1, \ldots, t_d), t_i \in [0, T_i]$ with a reproducing kernel $H$ and any function $f\in H$ define approximation error as $$ \mathcal{E}_{\bar T}(f, B) =\int\limits_0^{T_1}\ldots \int\limits_0^{T_d} (f(\bar t) - B(\bar t))^2 d\bar t + \lambda^2 \|f\|_{H}^2. $$ The first term defines proximity of $f$ to $B$ and the second one defines energy efficiency of $f$. Coefficient $\lambda$ allows to balance between these two parts. The best approximation is $$ f_{\mathrm{opt}} = \underset{f\in H}{\arg\min}\, \mathcal{E}_{\bar T}(f, B). $$ We prove the law of large numbers on convergence of optimal approximation error of Brownian Sheet in $L^2$ and almost surely.
@article{ZNSL_2022_515_a8,
     author = {N. A. Karagodin},
     title = {Energy efficient approximations of {Brownian} {Sheet}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--155},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/}
}
TY  - JOUR
AU  - N. A. Karagodin
TI  - Energy efficient approximations of Brownian Sheet
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 141
EP  - 155
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/
LA  - ru
ID  - ZNSL_2022_515_a8
ER  - 
%0 Journal Article
%A N. A. Karagodin
%T Energy efficient approximations of Brownian Sheet
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 141-155
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/
%G ru
%F ZNSL_2022_515_a8
N. A. Karagodin. Energy efficient approximations of Brownian Sheet. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 141-155. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a8/