@article{ZNSL_2022_515_a7,
author = {A. Gusakova and E. Spodarev and D. Zaporozhets},
title = {Intrinsic volumes of ellipsoids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--140},
year = {2022},
volume = {515},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/}
}
A. Gusakova; E. Spodarev; D. Zaporozhets. Intrinsic volumes of ellipsoids. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 121-140. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/
[1] P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, and et al., Planck 2015 results. XVI. Isotropy and statistics of the CMB, 2015, arXiv: 1506.07135
[2] P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, and et al., “Planck 2015 results”, Astronomy Astrophysics, 594:A16 (Sep. 2016)
[3] D. H. Bailey, J. M. Borwein, and R. E. Crandall, “Box integrals”, J. Comput. Appl. Math., 206:1 (2007), 196–208 | DOI | MR
[4] R. B. Bapat, “Mixed discriminants of positive semidefinite matrices”, Linear Algebra Appl., 126 (1989), 107–124 | DOI | MR
[5] U. Bäsel, The moments of the distance between two random points in a regular polygon, 2021, arXiv: 2101.03815
[6] C. Buchta, “Zufallspolygone in konvexen Vielecken”, J. für die reine und angewandte Mathematik, 347 (1984), 212–220 | MR
[7] B. C. Carlson, “Some inequalities for hypergeometric functions”, Proc. Amer. Math. Soc., 17 (1966), 32–39 | DOI | MR
[8] B. C. Carlson, Special functions of applied mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977 | MR
[9] B. Ghosh, “Random distances within a rectangle and between two rectangles”, Bull. Calcutta Math. Soc., 43 (1951), 17–24 | MR
[10] F. Götze, A. Gusakova, and D. Zaporozhets, “Random affine simplexes”, J. Appl. Probab., 56:1 (2019), 39–51 | DOI | MR
[11] L. Heinrich, “Lower and upper bounds for chord power integrals of ellipsoids”, Appl. Math. Sci., 8 (2014), 8257–8269
[12] Z. Kabluchko, D. Zaporozhets, “Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 408, no. 18, 2012, 187–196 | MR
[13] Z. Kabluchko, D. Zaporozhets, “Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls”, Trans. Amer. Math. Soc., 368:12 (2016), 8873–8899 | DOI | MR
[14] J. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1996), 660–672 | DOI | MR
[15] V. Klee, “What is the expected volume of a simplex whose vertices are chosen at random from a given convex body”, Amer. Math. Monthly, 76 (1969), 286–288 | DOI | MR
[16] R. Latał{a}, D. Matlak, “Royen's proof of the Gaussian correlation inequality”, Geometric aspects of functional analysis, Lecture Notes in Math., 2169, Springer, Cham, 2017, 265–275 | DOI | MR
[17] K. Leichtweiß, “Convexity and differential geometry”, Handbook of Convex Geometry, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publ., North-Holland, Amsterdam, 1993, 1045–1080 | DOI | MR
[18] D. Mannion, “The volume of a tetrahedron whose vertices are chosen at random in the interior of a parent tetrahedron”, Advances Appl. Probab., 26 (1994), 577–596 | DOI | MR
[19] K. Mecke, D. Stoyan, Statistical Physics and Spatial Statistics, Lect. Notes Physics, 554, Berlin, 2000 | DOI | MR
[20] K. Mecke, D. Stoyan, Morphology of Condensed Matter, Lect. Notes Physics, 600, Berlin, 2002 | DOI
[21] R. E. Miles, “Isotropic random simplices”, Adv. Appl. Probab., 3 (1971), 353–382 | DOI | MR
[22] S. Myroshnychenko, K. Tatarko, V. Yaskin, “Unique determination of ellipsoids by their dual volumes and the moment problem”, International Mathematics Research Notices, 2021, rnab111 | DOI | MR
[23] F. Petrov, A. Tarasov, “Uniqueness of a three-dimensional ellipsoid with given intrinsic volumes”, Arnold Math. J., 6:2 (2020), 163–171 | DOI | MR
[24] W. J. Reed, “Random points in a simplex”, Pacific J. Math., 54 (1974), 183–198 | DOI | MR
[25] I. Rivin, “Surface area and other measures of ellipsoids”, Adv. Appl. Math., 39:4 (2007), 409–427 | DOI | MR
[26] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 151, expanded edition, Cambridge University Press, Cambridge, 2014 | MR
[27] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probab. its Appl. (New York), Springer-Verlag, Berlin, 2008 | MR
[28] T. Sheng, “The distance between two random points in plane regions”, Adv. Appl. Probab., 17:4 (1985), 748–773 | DOI | MR
[29] E. Spodarev, P. Straka, S. Winter, “Estimation of fractal dimension and fractal curvatures from digital images”, Chaos Solitons Fractals, 75 (2015), 134–152 | DOI | MR
[30] G. J. Tee, “Surface area and capacity of ellipsoids in $n$ dimensions”, New Zealand J. Math., 34:2 (2005), 165–198 | MR
[31] S. Torquato, Random Heterogeneous Materials. Microstructure and Macroscopic Properties, Interdisciplinary Applied Mathematics, 16, Springer-Verlag, New York, 2002 | DOI | MR
[32] Y. Zhuang, J. Pan, Random distances associated with hexagons, June 2011, arXiv: 1106.2200
[33] A. Zinani, “The expected volume of a tetrahedron whose vertices are chosen at random in the interior of a cube”, Monatshefte für Math., 139 (2003), 341–348 | DOI | MR