Intrinsic volumes of ellipsoids
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 121-140

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce explicit formulae for the intrinsic volumes of an ellipsoid in $\mathbb R^d$, $d\ge 2$, in terms of elliptic integrals. Namely, for an ellipsoid ${\mathcal E}\subset \mathbb R^d$ with semiaxes $a_1,\ldots, a_d$ we show that \begin{align*} V_k({\mathcal E})=\kappa_k\sum\limits_{i=1}^da_i^2s_{k-1}(a_1^2,\dots,a_{i-1}^2,a_{i+1}^2,\dots,a_d^2) \\\times\int\limits_0^{\infty}{t^{k-1}\over(a_i^2t^2+1)\prod\limits_{j=1}^d\sqrt{a_j^2t^2+1}} \rm{d}t \end{align*} for all $k=1,\ldots,d$, where $s_{k-1}$ is the $(k-1)$-th elementary symmetric polynomial and $\kappa_k$ is the volume of the $k$-dimensional unit ball. Some examples of the intrinsic volumes $V_k$ with low and high $k$ are given where our formulae look particularly simple. As an application we derive new formulae for the expected $k$-dimensional volume of random $k$-simplex in an ellipsoid and random Gaussian $k$-simplex.
@article{ZNSL_2022_515_a7,
     author = {A. Gusakova and E. Spodarev and D. Zaporozhets},
     title = {Intrinsic volumes of ellipsoids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--140},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/}
}
TY  - JOUR
AU  - A. Gusakova
AU  - E. Spodarev
AU  - D. Zaporozhets
TI  - Intrinsic volumes of ellipsoids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 121
EP  - 140
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/
LA  - en
ID  - ZNSL_2022_515_a7
ER  - 
%0 Journal Article
%A A. Gusakova
%A E. Spodarev
%A D. Zaporozhets
%T Intrinsic volumes of ellipsoids
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 121-140
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/
%G en
%F ZNSL_2022_515_a7
A. Gusakova; E. Spodarev; D. Zaporozhets. Intrinsic volumes of ellipsoids. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 121-140. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/