Intrinsic volumes of ellipsoids
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 121-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We deduce explicit formulae for the intrinsic volumes of an ellipsoid in $\mathbb R^d$, $d\ge 2$, in terms of elliptic integrals. Namely, for an ellipsoid ${\mathcal E}\subset \mathbb R^d$ with semiaxes $a_1,\ldots, a_d$ we show that \begin{align*} V_k({\mathcal E})&=\kappa_k\sum\limits_{i=1}^da_i^2s_{k-1}(a_1^2,\dots,a_{i-1}^2,a_{i+1}^2,\dots,a_d^2) \\&\times\int\limits_0^{\infty}{t^{k-1}\over(a_i^2t^2+1)\prod\limits_{j=1}^d\sqrt{a_j^2t^2+1}} \rm{d}t \end{align*} for all $k=1,\ldots,d$, where $s_{k-1}$ is the $(k-1)$-th elementary symmetric polynomial and $\kappa_k$ is the volume of the $k$-dimensional unit ball. Some examples of the intrinsic volumes $V_k$ with low and high $k$ are given where our formulae look particularly simple. As an application we derive new formulae for the expected $k$-dimensional volume of random $k$-simplex in an ellipsoid and random Gaussian $k$-simplex.
@article{ZNSL_2022_515_a7,
     author = {A. Gusakova and E. Spodarev and D. Zaporozhets},
     title = {Intrinsic volumes of ellipsoids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--140},
     year = {2022},
     volume = {515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/}
}
TY  - JOUR
AU  - A. Gusakova
AU  - E. Spodarev
AU  - D. Zaporozhets
TI  - Intrinsic volumes of ellipsoids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 121
EP  - 140
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/
LA  - en
ID  - ZNSL_2022_515_a7
ER  - 
%0 Journal Article
%A A. Gusakova
%A E. Spodarev
%A D. Zaporozhets
%T Intrinsic volumes of ellipsoids
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 121-140
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/
%G en
%F ZNSL_2022_515_a7
A. Gusakova; E. Spodarev; D. Zaporozhets. Intrinsic volumes of ellipsoids. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 121-140. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a7/

[1] P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, and et al., Planck 2015 results. XVI. Isotropy and statistics of the CMB, 2015, arXiv: 1506.07135

[2] P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, and et al., “Planck 2015 results”, Astronomy Astrophysics, 594:A16 (Sep. 2016)

[3] D. H. Bailey, J. M. Borwein, and R. E. Crandall, “Box integrals”, J. Comput. Appl. Math., 206:1 (2007), 196–208 | DOI | MR

[4] R. B. Bapat, “Mixed discriminants of positive semidefinite matrices”, Linear Algebra Appl., 126 (1989), 107–124 | DOI | MR

[5] U. Bäsel, The moments of the distance between two random points in a regular polygon, 2021, arXiv: 2101.03815

[6] C. Buchta, “Zufallspolygone in konvexen Vielecken”, J. für die reine und angewandte Mathematik, 347 (1984), 212–220 | MR

[7] B. C. Carlson, “Some inequalities for hypergeometric functions”, Proc. Amer. Math. Soc., 17 (1966), 32–39 | DOI | MR

[8] B. C. Carlson, Special functions of applied mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977 | MR

[9] B. Ghosh, “Random distances within a rectangle and between two rectangles”, Bull. Calcutta Math. Soc., 43 (1951), 17–24 | MR

[10] F. Götze, A. Gusakova, and D. Zaporozhets, “Random affine simplexes”, J. Appl. Probab., 56:1 (2019), 39–51 | DOI | MR

[11] L. Heinrich, “Lower and upper bounds for chord power integrals of ellipsoids”, Appl. Math. Sci., 8 (2014), 8257–8269

[12] Z. Kabluchko, D. Zaporozhets, “Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 408, no. 18, 2012, 187–196 | MR

[13] Z. Kabluchko, D. Zaporozhets, “Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls”, Trans. Amer. Math. Soc., 368:12 (2016), 8873–8899 | DOI | MR

[14] J. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1996), 660–672 | DOI | MR

[15] V. Klee, “What is the expected volume of a simplex whose vertices are chosen at random from a given convex body”, Amer. Math. Monthly, 76 (1969), 286–288 | DOI | MR

[16] R. Latał{a}, D. Matlak, “Royen's proof of the Gaussian correlation inequality”, Geometric aspects of functional analysis, Lecture Notes in Math., 2169, Springer, Cham, 2017, 265–275 | DOI | MR

[17] K. Leichtweiß, “Convexity and differential geometry”, Handbook of Convex Geometry, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publ., North-Holland, Amsterdam, 1993, 1045–1080 | DOI | MR

[18] D. Mannion, “The volume of a tetrahedron whose vertices are chosen at random in the interior of a parent tetrahedron”, Advances Appl. Probab., 26 (1994), 577–596 | DOI | MR

[19] K. Mecke, D. Stoyan, Statistical Physics and Spatial Statistics, Lect. Notes Physics, 554, Berlin, 2000 | DOI | MR

[20] K. Mecke, D. Stoyan, Morphology of Condensed Matter, Lect. Notes Physics, 600, Berlin, 2002 | DOI

[21] R. E. Miles, “Isotropic random simplices”, Adv. Appl. Probab., 3 (1971), 353–382 | DOI | MR

[22] S. Myroshnychenko, K. Tatarko, V. Yaskin, “Unique determination of ellipsoids by their dual volumes and the moment problem”, International Mathematics Research Notices, 2021, rnab111 | DOI | MR

[23] F. Petrov, A. Tarasov, “Uniqueness of a three-dimensional ellipsoid with given intrinsic volumes”, Arnold Math. J., 6:2 (2020), 163–171 | DOI | MR

[24] W. J. Reed, “Random points in a simplex”, Pacific J. Math., 54 (1974), 183–198 | DOI | MR

[25] I. Rivin, “Surface area and other measures of ellipsoids”, Adv. Appl. Math., 39:4 (2007), 409–427 | DOI | MR

[26] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 151, expanded edition, Cambridge University Press, Cambridge, 2014 | MR

[27] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probab. its Appl. (New York), Springer-Verlag, Berlin, 2008 | MR

[28] T. Sheng, “The distance between two random points in plane regions”, Adv. Appl. Probab., 17:4 (1985), 748–773 | DOI | MR

[29] E. Spodarev, P. Straka, S. Winter, “Estimation of fractal dimension and fractal curvatures from digital images”, Chaos Solitons Fractals, 75 (2015), 134–152 | DOI | MR

[30] G. J. Tee, “Surface area and capacity of ellipsoids in $n$ dimensions”, New Zealand J. Math., 34:2 (2005), 165–198 | MR

[31] S. Torquato, Random Heterogeneous Materials. Microstructure and Macroscopic Properties, Interdisciplinary Applied Mathematics, 16, Springer-Verlag, New York, 2002 | DOI | MR

[32] Y. Zhuang, J. Pan, Random distances associated with hexagons, June 2011, arXiv: 1106.2200

[33] A. Zinani, “The expected volume of a tetrahedron whose vertices are chosen at random in the interior of a cube”, Monatshefte für Math., 139 (2003), 341–348 | DOI | MR