Around the infinite divisibility of the Dickman distribution and related topics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 91-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There are two probability distributions related to the Dickman function from number theory, which are sometimes confused with each other. We give a careful exposition on the difference between the two. While one is known to be infinite divisible, we give a computational proof to show that the other is not. We apply this to get related results for self-decomposable distributions with so-called truncated Lévy measures. Further, we extend several results about the infinitely divisible Dickman distribution related to its role in the context of sums on independent random variables and perpetuities. Along the way, we discuss several approaches for checking if a distribution is or is not infinitely divisible.
@article{ZNSL_2022_515_a6,
     author = {M. Grabchak and S. A. Molchanov and V. Panov},
     title = {Around the infinite divisibility of the {Dickman} distribution and related topics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--120},
     year = {2022},
     volume = {515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/}
}
TY  - JOUR
AU  - M. Grabchak
AU  - S. A. Molchanov
AU  - V. Panov
TI  - Around the infinite divisibility of the Dickman distribution and related topics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 91
EP  - 120
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/
LA  - en
ID  - ZNSL_2022_515_a6
ER  - 
%0 Journal Article
%A M. Grabchak
%A S. A. Molchanov
%A V. Panov
%T Around the infinite divisibility of the Dickman distribution and related topics
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 91-120
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/
%G en
%F ZNSL_2022_515_a6
M. Grabchak; S. A. Molchanov; V. Panov. Around the infinite divisibility of the Dickman distribution and related topics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 91-120. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, 10th ed., Dover Publications, New York, 1972 | MR

[2] A. Alhakim, S. Molchanov, “The density flatness phenomenon”, Statistics Probability Letters, 152 (2019), 156–161 | DOI | MR

[3] N. G. de Bruijn, “On the number of positive integers $\le x$ and free of prime factors $> y$”, Indagationes Mathematicae, 13 (1951), 50–60 | DOI | MR

[4] N. G. de Bruijn, “On the number of positive integers $\le x$ and free of prime factors $> y$. II”, Indagationes Mathematicae, 28 (1966), 239–247 | DOI | MR

[5] A. A. Buchstab, “On those numbers in an arithmetic progression all prime factors of which are small in magnitude”, Dokl. Akad. Nauk SSSR, 67 (1949), 5–8 | MR

[6] S. Covo, “On approximations of small jumps of subordinators with particular emphasis on a Dickman-type limit”, J. Appl. Probab., 46:3 (2009), 732–755 | DOI | MR

[7] S. Covo, “One-dimensional distributions of subordinators with upper truncated Lévy measure, and applications”, Advances Appl. Probab., 41:2 (2009), 367–392 | DOI | MR

[8] A. Dassio, J. W. Lim, Y. Qu, “Exact simulation of a truncated Lévy subordinator”, ACM Transactions on Modeling and Computer Simulation, 30:10 (2020), 17 | MR

[9] K. Dickman, “On the frequency of numbers containing prime factors of a certain relative magnitude”, Arkiv for Matematik, Astronomi Och Fysik, 22:10 (1930), A–10

[10] D. Dufresne, “On the stochastic equation $\mathcal L(X)=\mathcal L[B(X+C)]$ and a property of gamma distributions”, Bernoulli, 2:3 (1996), 287–291 | DOI | MR

[11] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, 2nd Ed., John Wiley Sons, Inc., New York, 1971 | MR

[12] M. Grabchak, “Domains of attraction for positive and discrete tempered stable distributions”, J. Appl. Probab., 55:1 (2018), 30–42 | DOI | MR

[13] M. Grabchak, S. Molchanov, “Limit theorems for random exponentials: the bounded support case”, Probab. Theory Its Appl., 63:4 (2019), 779–794 | DOI | MR

[14] C.M. Goldie, R. Grübel, “Perpetuities with thin tails”, Advances Appl. Probab., 28:2 (1996), 463–480 | DOI | MR

[15] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971 | MR

[16] Z. J. Jurek, “Selfdecomposability perpetuity laws and stopping times”, Probab. Math. Statist., 19:2 (1999), 413–419 | MR

[17] O. Kallenberg, Foundations of Modern Probability, 2nd ed., Springer, New York, 2002 | MR

[18] M. M. Meerschaert, H. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, John Wiley Sons, New York, 2001 | MR

[19] S. A. Molchanov, V. A. Panov, “The Dickman–Goncharov distribution”, Russian Math. Surveys, 75:6 (2020), 1089 | DOI | MR

[20] M. D. Penrose, A. R. Wade, “Random minimal directed spanning trees and Dickman-type distributions”, Advances Appl. Probab., 36:3 (2004), 691–714 | DOI | MR

[21] V. Ramaswami, “On the number of positive integers less than $x$ and free of prime divisors greater than $x^c$”, Bull. Amer. Math. Soc., 55:12 (1949), 1122–1127 | DOI | MR

[22] S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007 | MR

[23] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999 | MR

[24] P. Seba, “Markov chain of distances between parked cars”, J. Physics A: Math. Theor., 41:12 (2008), 122003 | DOI | MR

[25] P.J. Smith, “A recursive formulation of the old problem of obtaining moments from cumulants and vice versa”, The American Statistician, 49:2 (1995), 217–218 | MR

[26] F. W. Steutel, K. Van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, Inc, New York, 2004 | MR

[27] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd ed., American Mathematical Society, Providence, 2015 | MR

[28] W. Vervaat, “On a stochastic difference equation and a representation of non-negative infinitely divisible random variables”, Adv. Appl. Probab., 11:4 (1979), 750–783 | DOI | MR