@article{ZNSL_2022_515_a6,
author = {M. Grabchak and S. A. Molchanov and V. Panov},
title = {Around the infinite divisibility of the {Dickman} distribution and related topics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--120},
year = {2022},
volume = {515},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/}
}
TY - JOUR AU - M. Grabchak AU - S. A. Molchanov AU - V. Panov TI - Around the infinite divisibility of the Dickman distribution and related topics JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 91 EP - 120 VL - 515 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/ LA - en ID - ZNSL_2022_515_a6 ER -
M. Grabchak; S. A. Molchanov; V. Panov. Around the infinite divisibility of the Dickman distribution and related topics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 91-120. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/
[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, 10th ed., Dover Publications, New York, 1972 | MR
[2] A. Alhakim, S. Molchanov, “The density flatness phenomenon”, Statistics Probability Letters, 152 (2019), 156–161 | DOI | MR
[3] N. G. de Bruijn, “On the number of positive integers $\le x$ and free of prime factors $> y$”, Indagationes Mathematicae, 13 (1951), 50–60 | DOI | MR
[4] N. G. de Bruijn, “On the number of positive integers $\le x$ and free of prime factors $> y$. II”, Indagationes Mathematicae, 28 (1966), 239–247 | DOI | MR
[5] A. A. Buchstab, “On those numbers in an arithmetic progression all prime factors of which are small in magnitude”, Dokl. Akad. Nauk SSSR, 67 (1949), 5–8 | MR
[6] S. Covo, “On approximations of small jumps of subordinators with particular emphasis on a Dickman-type limit”, J. Appl. Probab., 46:3 (2009), 732–755 | DOI | MR
[7] S. Covo, “One-dimensional distributions of subordinators with upper truncated Lévy measure, and applications”, Advances Appl. Probab., 41:2 (2009), 367–392 | DOI | MR
[8] A. Dassio, J. W. Lim, Y. Qu, “Exact simulation of a truncated Lévy subordinator”, ACM Transactions on Modeling and Computer Simulation, 30:10 (2020), 17 | MR
[9] K. Dickman, “On the frequency of numbers containing prime factors of a certain relative magnitude”, Arkiv for Matematik, Astronomi Och Fysik, 22:10 (1930), A–10
[10] D. Dufresne, “On the stochastic equation $\mathcal L(X)=\mathcal L[B(X+C)]$ and a property of gamma distributions”, Bernoulli, 2:3 (1996), 287–291 | DOI | MR
[11] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, 2nd Ed., John Wiley Sons, Inc., New York, 1971 | MR
[12] M. Grabchak, “Domains of attraction for positive and discrete tempered stable distributions”, J. Appl. Probab., 55:1 (2018), 30–42 | DOI | MR
[13] M. Grabchak, S. Molchanov, “Limit theorems for random exponentials: the bounded support case”, Probab. Theory Its Appl., 63:4 (2019), 779–794 | DOI | MR
[14] C.M. Goldie, R. Grübel, “Perpetuities with thin tails”, Advances Appl. Probab., 28:2 (1996), 463–480 | DOI | MR
[15] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971 | MR
[16] Z. J. Jurek, “Selfdecomposability perpetuity laws and stopping times”, Probab. Math. Statist., 19:2 (1999), 413–419 | MR
[17] O. Kallenberg, Foundations of Modern Probability, 2nd ed., Springer, New York, 2002 | MR
[18] M. M. Meerschaert, H. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, John Wiley Sons, New York, 2001 | MR
[19] S. A. Molchanov, V. A. Panov, “The Dickman–Goncharov distribution”, Russian Math. Surveys, 75:6 (2020), 1089 | DOI | MR
[20] M. D. Penrose, A. R. Wade, “Random minimal directed spanning trees and Dickman-type distributions”, Advances Appl. Probab., 36:3 (2004), 691–714 | DOI | MR
[21] V. Ramaswami, “On the number of positive integers less than $x$ and free of prime divisors greater than $x^c$”, Bull. Amer. Math. Soc., 55:12 (1949), 1122–1127 | DOI | MR
[22] S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007 | MR
[23] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999 | MR
[24] P. Seba, “Markov chain of distances between parked cars”, J. Physics A: Math. Theor., 41:12 (2008), 122003 | DOI | MR
[25] P.J. Smith, “A recursive formulation of the old problem of obtaining moments from cumulants and vice versa”, The American Statistician, 49:2 (1995), 217–218 | MR
[26] F. W. Steutel, K. Van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, Inc, New York, 2004 | MR
[27] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd ed., American Mathematical Society, Providence, 2015 | MR
[28] W. Vervaat, “On a stochastic difference equation and a representation of non-negative infinitely divisible random variables”, Adv. Appl. Probab., 11:4 (1979), 750–783 | DOI | MR