Around the infinite divisibility of the Dickman distribution and related topics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 91-120

Voir la notice de l'article provenant de la source Math-Net.Ru

There are two probability distributions related to the Dickman function from number theory, which are sometimes confused with each other. We give a careful exposition on the difference between the two. While one is known to be infinite divisible, we give a computational proof to show that the other is not. We apply this to get related results for self-decomposable distributions with so-called truncated Lévy measures. Further, we extend several results about the infinitely divisible Dickman distribution related to its role in the context of sums on independent random variables and perpetuities. Along the way, we discuss several approaches for checking if a distribution is or is not infinitely divisible.
@article{ZNSL_2022_515_a6,
     author = {M. Grabchak and S. A. Molchanov and V. Panov},
     title = {Around the infinite divisibility of the {Dickman} distribution and related topics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--120},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/}
}
TY  - JOUR
AU  - M. Grabchak
AU  - S. A. Molchanov
AU  - V. Panov
TI  - Around the infinite divisibility of the Dickman distribution and related topics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 91
EP  - 120
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/
LA  - en
ID  - ZNSL_2022_515_a6
ER  - 
%0 Journal Article
%A M. Grabchak
%A S. A. Molchanov
%A V. Panov
%T Around the infinite divisibility of the Dickman distribution and related topics
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 91-120
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/
%G en
%F ZNSL_2022_515_a6
M. Grabchak; S. A. Molchanov; V. Panov. Around the infinite divisibility of the Dickman distribution and related topics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 91-120. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a6/