@article{ZNSL_2022_515_a5,
author = {Ya. S. Golikova and A. Yu. Zaitsev},
title = {On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--90},
year = {2022},
volume = {515},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/}
}
TY - JOUR AU - Ya. S. Golikova AU - A. Yu. Zaitsev TI - On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 83 EP - 90 VL - 515 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/ LA - ru ID - ZNSL_2022_515_a5 ER -
%0 Journal Article %A Ya. S. Golikova %A A. Yu. Zaitsev %T On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 83-90 %V 515 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/ %G ru %F ZNSL_2022_515_a5
Ya. S. Golikova; A. Yu. Zaitsev. On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 83-90. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/
[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | MR
[2] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR
[3] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 214 pp. | MR
[4] J. Bretagnolle, “Sur l'inégalité de concentration de Doeblin–Lévy, Rogozin–Kesten”, Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life, Stat. Ind. Technol., Birkhäuser Boston, Boston, 2004, 533–551 | DOI | MR
[5] V. Chyakanavichyus, “Ob obobschennykh puassonovskikh approksimatsiyakh pri momentnykh ogranicheniyakh”, Teoriya veroyatn. i ee primen., 44:1 (1999), 74–86 | MR
[6] V. Čekanavičius, “Infinitely divisible approximations for discrete nonlattice variables”, Adv. Appl. Probab., 35:4 (2003), 982–1006 | DOI | MR
[7] V. Čekanavičius, Y. H. Wang, “Compound Poisson approximations for sums of discrete nonlattice variables”, Adv. Appl. Probab., 35:1 (2003), 228–250 | DOI | MR
[8] J.-M. Deshouillers, S. Sutanto, “On the rate of decay of the concentration function of the sum of independent random variables”, Ramanujan J., 9:1–2 (2005), 241–250 | DOI | MR
[9] J.-M. Deshouillers, G. A. Freiman, A. A. Yudin, “On bounds for the concentration functions”, Astérisque, 258, 1999, 425–436 | MR
[10] C.-G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 9 (1968), 290–308 | DOI | MR
[11] A. S. Fainleib, “On small values of semi-additive function”, J. Theoret. Probab., 11 (1998), 609–619 | DOI | MR
[12] O. Friedland, S. Sodin, “Bounds on the concentration function in terms of the Diophantine approximation”, C. R. Math. Acad. Sci. Paris, 345:9 (2007), 513–518 | DOI | MR
[13] F. Götze, A. Yu. Zaitsev, “Estimates for the rapid decay of concentration functions of $n$-fold convolutions”, J. Theoret. Probab., 11:3 (1998), 715–731 | DOI | MR
[14] F. Götze, A. Yu. Zaitsev, “A multiplicative inequality for concentration functions of $n$-fold convolutions”, High dimensional probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 39–47 | MR
[15] P. S. Griffin, N. C. Jain, W. E. Pruitt, “Approximate local limit theorems for laws outside domains of attraction”, Ann. Probab., 12:1 (1984), 45–63 | DOI | MR
[16] G. Halász, “Estimates for the concentration function of combinatorial number theory and probability”, Period. Math. Hungar., 8 (1977), 197–211 | DOI | MR
[17] P. Hall, “Two-sided bounds on the rate of convergence to a stable law”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 57 (1981), 349–364 | DOI | MR
[18] P. Hall, “Order of magnitude of the concentration function”, Proc. Amer. Math. Soc., 89:1 (1983), 141–144 | DOI | MR
[19] V. Khengartner, R. Teodoresku, Funktsii kontsentratsii, Per. s angl. V. M. Kruglova, V. M. Zolotareva, Nauka, M., 1980 | MR
[20] I. A. Ibragimov, E. L. Presman, “O skorosti sblizheniya raspredelenii summ nezavisimykh sluchainykh velichin s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 18:4 (1973), 753–766 | MR
[21] H. Kesten, “A sharper form of the Doeblin–Lévy–Kolmogorov–Rogozin inequality for concentration functions”, Math. Scand., 25 (1969), 133–144 | DOI | MR
[22] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 384–394
[23] A. N. Kolmogorov, “O priblizhenii raspredelenii summ nezavisimykh slagaemykh neogranichenno delimymi raspredeleniyami”, Trudy Moskov. matem. ob-va, 12, 1963, 437–451
[24] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace, anniversary volume, Springer, Berlin–Heidelberg–N.Y., 1965, 179–202 | MR
[25] A. L. Miroshnikov, B. A. Rogozin, “Neravenstva dlya funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 25 (1980), 178–183 | MR
[26] L. N. Morozova, “Nekotorye otsenki funktsii kontsentratsii summy nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Predelnye teoremy dlya sluchainykh protsessov, Fan, Tashkent, 1977, 85–91
[27] A. B. Mukhin, “O kontsentratsii raspredelenii summy nezavisimykh sluchainykh velichin. I; II; III”, Izv. AN Uzb. SSR, ser. fiz.-matem., 1973, no. 2, 25–29; 1973, No 4, 18–23; 1976, No 1, 15–19
[28] A. B. Mukhin, “Odna otsenka bystrogo ubyvaniya kontsentratsii raspredelenii summy nezavisimykh sluchainykh velichin”, Predelnye teoremy dlya sluchainykh protsessov, Fan, Tashkent, 1976, 117–121
[29] A. B. Mukhin, “O lokalnykh veroyatnostyakh summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 34:4 (1989), 677–685 | MR
[30] S. V. Nagaev, S. S. Khodzhabagyan, “Ob otsenke funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 41:3 (1996), 655–665 | MR
[31] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1972
[32] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1987
[33] E. L. Presman, “O sblizhenii po variatsii raspredeleniya summy nezavisimykh bernullievskikh velichin s puassonovskim zakonom”, Teoriya veroyatn. i ee primen., 30:2 (1985), 391–396 | MR
[34] B. A. Rogozin, “Ob odnoi otsenke funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 6:1 (1961), 103–105
[35] M. Rudelson, R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218:2 (2008), 600–633 | DOI | MR
[36] K. I. Satybaldina, “Absolyutnye otsenki skorosti skhodimosti k ustoichivym zakonam”, Teoriya veroyatn. i ee primen., 17:4 (1972), 773–775 | MR
[37] A. P. Suchkov, N. G. Ushakov, “O bystrom ubyvanii funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 34:3 (1989), 604–607 | MR
[38] T. Tao, Van H. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices”, Ann. Math. (2), 169:2 (2009), 595–632 | DOI | MR
[39] A. Yu. Zaitsev, “O ravnomernoi approksimatsii funktsii raspredeleniya summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 32:1 (1987), 45–52 | MR
[40] A. Yu. Zaitsev, “Approksimatsiya svertok veroyatnostnykh raspredelenii bezgranichno delimymi zakonami pri oslablennykh momentnykh ogranicheniyakh”, Zap. nauchn. semin. POMI, 194, 1992, 79–90
[41] A. Yu. Zaitsev, “Approksimatsiya svertok soprovozhdayuschimi zakonami pri suschestvovanii momentov nevysokikh poryadkov”, Zap. nauchn. semin. POMI, 228, 1996, 135–141