On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 83-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Applying the results of Zaitsev (1987) to specific symmetric distributions with slowly decreasing power tails, we obtained power estimates for the accuracy of the infinitely divisible approximation of the distributions of sums of $n$ i.i.d. random variables of the form $O(n^{-1+\varepsilon})$ with $\varepsilon$ arbitrarily close to zero.
@article{ZNSL_2022_515_a5,
     author = {Ya. S. Golikova and A. Yu. Zaitsev},
     title = {On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--90},
     year = {2022},
     volume = {515},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/}
}
TY  - JOUR
AU  - Ya. S. Golikova
AU  - A. Yu. Zaitsev
TI  - On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 83
EP  - 90
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/
LA  - ru
ID  - ZNSL_2022_515_a5
ER  - 
%0 Journal Article
%A Ya. S. Golikova
%A A. Yu. Zaitsev
%T On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 83-90
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/
%G ru
%F ZNSL_2022_515_a5
Ya. S. Golikova; A. Yu. Zaitsev. On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 83-90. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/

[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | MR

[2] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR

[3] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 214 pp. | MR

[4] J. Bretagnolle, “Sur l'inégalité de concentration de Doeblin–Lévy, Rogozin–Kesten”, Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life, Stat. Ind. Technol., Birkhäuser Boston, Boston, 2004, 533–551 | DOI | MR

[5] V. Chyakanavichyus, “Ob obobschennykh puassonovskikh approksimatsiyakh pri momentnykh ogranicheniyakh”, Teoriya veroyatn. i ee primen., 44:1 (1999), 74–86 | MR

[6] V. Čekanavičius, “Infinitely divisible approximations for discrete nonlattice variables”, Adv. Appl. Probab., 35:4 (2003), 982–1006 | DOI | MR

[7] V. Čekanavičius, Y. H. Wang, “Compound Poisson approximations for sums of discrete nonlattice variables”, Adv. Appl. Probab., 35:1 (2003), 228–250 | DOI | MR

[8] J.-M. Deshouillers, S. Sutanto, “On the rate of decay of the concentration function of the sum of independent random variables”, Ramanujan J., 9:1–2 (2005), 241–250 | DOI | MR

[9] J.-M. Deshouillers, G. A. Freiman, A. A. Yudin, “On bounds for the concentration functions”, Astérisque, 258, 1999, 425–436 | MR

[10] C.-G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 9 (1968), 290–308 | DOI | MR

[11] A. S. Fainleib, “On small values of semi-additive function”, J. Theoret. Probab., 11 (1998), 609–619 | DOI | MR

[12] O. Friedland, S. Sodin, “Bounds on the concentration function in terms of the Diophantine approximation”, C. R. Math. Acad. Sci. Paris, 345:9 (2007), 513–518 | DOI | MR

[13] F. Götze, A. Yu. Zaitsev, “Estimates for the rapid decay of concentration functions of $n$-fold convolutions”, J. Theoret. Probab., 11:3 (1998), 715–731 | DOI | MR

[14] F. Götze, A. Yu. Zaitsev, “A multiplicative inequality for concentration functions of $n$-fold convolutions”, High dimensional probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 39–47 | MR

[15] P. S. Griffin, N. C. Jain, W. E. Pruitt, “Approximate local limit theorems for laws outside domains of attraction”, Ann. Probab., 12:1 (1984), 45–63 | DOI | MR

[16] G. Halász, “Estimates for the concentration function of combinatorial number theory and probability”, Period. Math. Hungar., 8 (1977), 197–211 | DOI | MR

[17] P. Hall, “Two-sided bounds on the rate of convergence to a stable law”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 57 (1981), 349–364 | DOI | MR

[18] P. Hall, “Order of magnitude of the concentration function”, Proc. Amer. Math. Soc., 89:1 (1983), 141–144 | DOI | MR

[19] V. Khengartner, R. Teodoresku, Funktsii kontsentratsii, Per. s angl. V. M. Kruglova, V. M. Zolotareva, Nauka, M., 1980 | MR

[20] I. A. Ibragimov, E. L. Presman, “O skorosti sblizheniya raspredelenii summ nezavisimykh sluchainykh velichin s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 18:4 (1973), 753–766 | MR

[21] H. Kesten, “A sharper form of the Doeblin–Lévy–Kolmogorov–Rogozin inequality for concentration functions”, Math. Scand., 25 (1969), 133–144 | DOI | MR

[22] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 384–394

[23] A. N. Kolmogorov, “O priblizhenii raspredelenii summ nezavisimykh slagaemykh neogranichenno delimymi raspredeleniyami”, Trudy Moskov. matem. ob-va, 12, 1963, 437–451

[24] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace, anniversary volume, Springer, Berlin–Heidelberg–N.Y., 1965, 179–202 | MR

[25] A. L. Miroshnikov, B. A. Rogozin, “Neravenstva dlya funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 25 (1980), 178–183 | MR

[26] L. N. Morozova, “Nekotorye otsenki funktsii kontsentratsii summy nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Predelnye teoremy dlya sluchainykh protsessov, Fan, Tashkent, 1977, 85–91

[27] A. B. Mukhin, “O kontsentratsii raspredelenii summy nezavisimykh sluchainykh velichin. I; II; III”, Izv. AN Uzb. SSR, ser. fiz.-matem., 1973, no. 2, 25–29; 1973, No 4, 18–23; 1976, No 1, 15–19

[28] A. B. Mukhin, “Odna otsenka bystrogo ubyvaniya kontsentratsii raspredelenii summy nezavisimykh sluchainykh velichin”, Predelnye teoremy dlya sluchainykh protsessov, Fan, Tashkent, 1976, 117–121

[29] A. B. Mukhin, “O lokalnykh veroyatnostyakh summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 34:4 (1989), 677–685 | MR

[30] S. V. Nagaev, S. S. Khodzhabagyan, “Ob otsenke funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 41:3 (1996), 655–665 | MR

[31] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1972

[32] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1987

[33] E. L. Presman, “O sblizhenii po variatsii raspredeleniya summy nezavisimykh bernullievskikh velichin s puassonovskim zakonom”, Teoriya veroyatn. i ee primen., 30:2 (1985), 391–396 | MR

[34] B. A. Rogozin, “Ob odnoi otsenke funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 6:1 (1961), 103–105

[35] M. Rudelson, R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218:2 (2008), 600–633 | DOI | MR

[36] K. I. Satybaldina, “Absolyutnye otsenki skorosti skhodimosti k ustoichivym zakonam”, Teoriya veroyatn. i ee primen., 17:4 (1972), 773–775 | MR

[37] A. P. Suchkov, N. G. Ushakov, “O bystrom ubyvanii funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 34:3 (1989), 604–607 | MR

[38] T. Tao, Van H. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices”, Ann. Math. (2), 169:2 (2009), 595–632 | DOI | MR

[39] A. Yu. Zaitsev, “O ravnomernoi approksimatsii funktsii raspredeleniya summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 32:1 (1987), 45–52 | MR

[40] A. Yu. Zaitsev, “Approksimatsiya svertok veroyatnostnykh raspredelenii bezgranichno delimymi zakonami pri oslablennykh momentnykh ogranicheniyakh”, Zap. nauchn. semin. POMI, 194, 1992, 79–90

[41] A. Yu. Zaitsev, “Approksimatsiya svertok soprovozhdayuschimi zakonami pri suschestvovanii momentov nevysokikh poryadkov”, Zap. nauchn. semin. POMI, 228, 1996, 135–141