On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 83-90

Voir la notice de l'article provenant de la source Math-Net.Ru

Applying the results of Zaitsev (1987) to specific symmetric distributions with slowly decreasing power tails, we obtained power estimates for the accuracy of the infinitely divisible approximation of the distributions of sums of $n$ i.i.d. random variables of the form $O(n^{-1+\varepsilon})$ with $\varepsilon$ arbitrarily close to zero.
@article{ZNSL_2022_515_a5,
     author = {Ya. S. Golikova and A. Yu. Zaitsev},
     title = {On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/}
}
TY  - JOUR
AU  - Ya. S. Golikova
AU  - A. Yu. Zaitsev
TI  - On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 83
EP  - 90
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/
LA  - ru
ID  - ZNSL_2022_515_a5
ER  - 
%0 Journal Article
%A Ya. S. Golikova
%A A. Yu. Zaitsev
%T On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 83-90
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/
%G ru
%F ZNSL_2022_515_a5
Ya. S. Golikova; A. Yu. Zaitsev. On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 83-90. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a5/