Stochastic model of the Cauchy--Robin problem for systems of nonlinear parabolic equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 39-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We derive stochastic equations to describe reflected diffusion processes associated with the Cauchy–Neumann problem for systems of nonlinear parabolic equations in non-divergent form. The construction of a solution to the arized stochastic problem is based on a localization procedure that allows to reduce the problem in a closed domain to the corresponding problem in the half space. As a result we obtain a probabilistic representation of a weak solution to the Cauchy–Neumann problem in a bounded domain with a smooth boundary.
			
            
            
            
          
        
      @article{ZNSL_2022_515_a3,
     author = {Ya. I. Belopolskaya},
     title = {Stochastic model of the {Cauchy--Robin} problem for systems of nonlinear parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--71},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/}
}
                      
                      
                    TY - JOUR AU - Ya. I. Belopolskaya TI - Stochastic model of the Cauchy--Robin problem for systems of nonlinear parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 39 EP - 71 VL - 515 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/ LA - ru ID - ZNSL_2022_515_a3 ER -
Ya. I. Belopolskaya. Stochastic model of the Cauchy--Robin problem for systems of nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 39-71. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/