@article{ZNSL_2022_515_a3,
author = {Ya. I. Belopolskaya},
title = {Stochastic model of the {Cauchy{\textendash}Robin} problem for systems of nonlinear parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--71},
year = {2022},
volume = {515},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/}
}
Ya. I. Belopolskaya. Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 39-71. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/
[1] E. Carlini, F. Silva, “A Fully-Discrete Scheme for Systems of Nonlinear Fokker-Planck–Kolmogorov Equations”, PDE Models for Multi-Agent Phenomena, Springer, 2018, 195–218 | DOI | MR
[2] Ya. I. Belopolskaya, “Stokhasticheskaya interpretatsiya kvazilineinykh parabolicheskikh sistem s kross-diffuziei”, Teor. veroyatn. prilozh., 61:2 (2016), 268–299
[3] A. V. Skorokhod, “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298 | MR
[4] A. V. Skorokhod, I. I. Gikhman, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR
[5] A. Sznitman, “Nonlinear reflecting diffusion process and the propagation of chaos and associated fluctuations”, J. Funct. Anal., 56:3 (1984), 311–336 | DOI | MR
[6] A.-S. Sznitman, “Topics in propagation of chaos”, Ecole d'éte de probabilités de Saint-Flour XIX (1989), Springer, 1991 | MR
[7] H. P. McKean, “A class of Markov processes associated with non-linear parabolic equations”, Proc. National Academy Sci., 56:6 (1966), 1907–1911 | DOI | MR
[8] T. Funaki, “A certain class of diffusion processes associated with nonlinear parabolic equations”, Z. Wahrsch. Verw. Geb., 67 (1984), 331–348 | DOI | MR
[9] R. F. Anderson, S. Orey, “Small random perturbation of dinamical systems with reflection boundary”, Nagoya Math. J., 60 (1976), 189–216 | DOI | MR
[10] M. I. Freidlin, “Diffuzionnye protsessy s otrazheniem i zadacha s kosoi proizvodnoi na mnogoobrazii s kraem”, Teor. veroyatn. prilozh., 8:1 (1963), 80–88
[11] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Univ Press, Princeton, 1985 | MR
[12] A. Le Cavil, N. Oudjane, F. Russo, “Probabilistic representation of a class of non-conservative nonlinear Partial Differential Equations”, ALEA, Lat. Am. J. Probab. Math. Stat., 13 (2016), 1189–1233 | DOI | MR
[13] Ya. I. Belopolskaya, “Stokhasticheskaya model zadachi Koshi-Neimana dlya nelineinogo parabolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 505, 2021, 38–61