Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 39-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive stochastic equations to describe reflected diffusion processes associated with the Cauchy–Neumann problem for systems of nonlinear parabolic equations in non-divergent form. The construction of a solution to the arized stochastic problem is based on a localization procedure that allows to reduce the problem in a closed domain to the corresponding problem in the half space. As a result we obtain a probabilistic representation of a weak solution to the Cauchy–Neumann problem in a bounded domain with a smooth boundary.
@article{ZNSL_2022_515_a3,
     author = {Ya. I. Belopolskaya},
     title = {Stochastic model of the {Cauchy{\textendash}Robin} problem for systems of nonlinear parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--71},
     year = {2022},
     volume = {515},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 39
EP  - 71
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/
LA  - ru
ID  - ZNSL_2022_515_a3
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 39-71
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/
%G ru
%F ZNSL_2022_515_a3
Ya. I. Belopolskaya. Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 39-71. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a3/

[1] E. Carlini, F. Silva, “A Fully-Discrete Scheme for Systems of Nonlinear Fokker-Planck–Kolmogorov Equations”, PDE Models for Multi-Agent Phenomena, Springer, 2018, 195–218 | DOI | MR

[2] Ya. I. Belopolskaya, “Stokhasticheskaya interpretatsiya kvazilineinykh parabolicheskikh sistem s kross-diffuziei”, Teor. veroyatn. prilozh., 61:2 (2016), 268–299

[3] A. V. Skorokhod, “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298 | MR

[4] A. V. Skorokhod, I. I. Gikhman, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR

[5] A. Sznitman, “Nonlinear reflecting diffusion process and the propagation of chaos and associated fluctuations”, J. Funct. Anal., 56:3 (1984), 311–336 | DOI | MR

[6] A.-S. Sznitman, “Topics in propagation of chaos”, Ecole d'éte de probabilités de Saint-Flour XIX (1989), Springer, 1991 | MR

[7] H. P. McKean, “A class of Markov processes associated with non-linear parabolic equations”, Proc. National Academy Sci., 56:6 (1966), 1907–1911 | DOI | MR

[8] T. Funaki, “A certain class of diffusion processes associated with nonlinear parabolic equations”, Z. Wahrsch. Verw. Geb., 67 (1984), 331–348 | DOI | MR

[9] R. F. Anderson, S. Orey, “Small random perturbation of dinamical systems with reflection boundary”, Nagoya Math. J., 60 (1976), 189–216 | DOI | MR

[10] M. I. Freidlin, “Diffuzionnye protsessy s otrazheniem i zadacha s kosoi proizvodnoi na mnogoobrazii s kraem”, Teor. veroyatn. prilozh., 8:1 (1963), 80–88

[11] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Univ Press, Princeton, 1985 | MR

[12] A. Le Cavil, N. Oudjane, F. Russo, “Probabilistic representation of a class of non-conservative nonlinear Partial Differential Equations”, ALEA, Lat. Am. J. Probab. Math. Stat., 13 (2016), 1189–1233 | DOI | MR

[13] Ya. I. Belopolskaya, “Stokhasticheskaya model zadachi Koshi-Neimana dlya nelineinogo parabolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 505, 2021, 38–61