Approximation of multiparametric Anderson-Darling processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 214-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a sequence of Gaussian random fields that are growing tensor products of generalized Anderson-Darling processes with a given sequence of main parameters $(\mu_j)_{j\in\mathbb{N}}$ that characterize a proximity to the Gaussian white noise. The average case approximation complexity for a given $d$-parametric random field is defined as the minimal number of values of continuous linear functionals that is needed to approximate the field with relative $2$-average error not exceeding a given threshold $\varepsilon$. In the paper we obtain logarithmic asymptotics of the average case approximation complexity for such random fields for fixed $\varepsilon\in(0,1)$ and $d\to\infty$ for in fact homogeneous case $\mu_j\to c$, $j\to\infty$, where $c\in(0,\infty)$ is a constant, and for the case $\mu_j\to\infty$, $j\to\infty$, that is rather non-standard for the practice of the similar approximation problems.
@article{ZNSL_2022_515_a14,
     author = {A. A. Khartov},
     title = {Approximation of multiparametric {Anderson-Darling} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--232},
     year = {2022},
     volume = {515},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a14/}
}
TY  - JOUR
AU  - A. A. Khartov
TI  - Approximation of multiparametric Anderson-Darling processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 214
EP  - 232
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a14/
LA  - ru
ID  - ZNSL_2022_515_a14
ER  - 
%0 Journal Article
%A A. A. Khartov
%T Approximation of multiparametric Anderson-Darling processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 214-232
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a14/
%G ru
%F ZNSL_2022_515_a14
A. A. Khartov. Approximation of multiparametric Anderson-Darling processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 214-232. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a14/

[1] A. A. Kravchenko, A. A. Khartov, “Asimptotiki slozhnosti approksimatsii v srednem dlya tenzornykh proizvedenii eilerovskikh integrirovannykh protsessov”, Zap. nauchn. semin. POMI, 505, 2021, 147–161

[2] T. W. Anderson, D.A. Darling, “A test of goodness of fit”, J. Amer. Statist. Assoc., 49 (1954), 765–769 | DOI | MR

[3] J. L. Brown, “Mean Square truncation error in series expansions of random functions”, J. Soc. Indust. Appl. Math., 8:1 (1960), 28–32 | DOI | MR

[4] J. Chen, H. Wang, J. Zhang, “Average case $(s,t)$-weak tractability of non-homogeneous tensor product problems”, J. Complexity, 49 (2018), 27–45 | DOI | MR

[5] A. Karol, A. Nazarov, Ya. Nikitin, “Small ball probabilities for Gaussian random fields and tensor products of compact operators”, Trans. Amer. Math. Soc., 360:3 (2008), 1443–1474 | DOI | MR

[6] A. A. Khartov, “Asymptotic analysis of average case approximation complexity of Hilbert space valued random elements”, J. Complexity, 31 (2015), 835–866 | DOI | MR

[7] A. A. Khartov, I. A. Limar, “Asymptotic analysis in multivariate average case approximation with Gaussian kernels”, J. Complexity, 70 (2022), 101631 | DOI | MR

[8] M. A. Lifshits, A. Papageorgiou, H. Woźniakowski, “Average case tractability of non-homogeneous tensor product problems”, J. Complexity, 28 (2012), 539–561 | DOI | MR

[9] M. A. Lifshits, A. Papageorgiou, H. Woźniakowski, “Tractability of multi-parametric Euler and Wiener integrated processes”, Probab. Math. Stat., 32:1 (2012), 131–165 | MR

[10] M. A. Lifshits, E. V. Tulyakova, “Curse of dimensionality in approximation of random fields”, Probab. Math. Stat., 26:1 (2006), 97–112 | MR

[11] Y. Liu, G. Xu, “Average case tractability of a multivariate approximation problem”, J. Complexity, 43 (2017), 76–102 | DOI | MR

[12] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, v. I, EMS Tracts Math., 6, Linear Information, EMS, Zürich, 2008 | MR

[13] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, v. II, EMS Tracts Math., 12, Standard Information for Functionals, EMS, Zürich, 2010 | MR

[14] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, v. III, EMS Tracts Math., 18, Standard Information for Operators, EMS, Zürich, 2012 | MR

[15] A. Papageorgiou, I. Petras, G. Xu, D. Yanqi, “EC-$(s,t)$-weak tractability of multivariate linear problems in the average case setting”, J. Complexity, 55 (2019), 101425 | DOI | MR

[16] J.-R. Pycke, “Multivariate extensions of the Anderson-Darling process”, Stat. Probab. Letters, 63 (2003), 387–399 | DOI | MR

[17] K. Ritter, Average-case Analysis of Numerical Problems, Lecture Notes in Math., 1733, Springer, Berlin, 2000 | DOI | MR

[18] G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986 | MR