Approximation of multiparametric Anderson-Darling processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 214-232
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a sequence of Gaussian random fields that are growing tensor products of generalized Anderson-Darling processes with a given sequence of main parameters $(\mu_j)_{j\in\mathbb{N}}$ that characterize a proximity to the Gaussian white noise. The average case approximation complexity for a given $d$-parametric random field is defined as the minimal number of values of continuous linear functionals that is needed to approximate the field with relative $2$-average error not exceeding a given threshold $\varepsilon$. In the paper we obtain logarithmic asymptotics of the average case approximation complexity for such random fields for fixed $\varepsilon\in(0,1)$ and $d\to\infty$ for in fact homogeneous case $\mu_j\to c$, $j\to\infty$, where $c\in(0,\infty)$ is a constant, and for the case $\mu_j\to\infty$, $j\to\infty$, that is rather non-standard for the practice of the similar approximation problems.
@article{ZNSL_2022_515_a14,
author = {A. A. Khartov},
title = {Approximation of multiparametric {Anderson-Darling} processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {214--232},
publisher = {mathdoc},
volume = {515},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a14/}
}
A. A. Khartov. Approximation of multiparametric Anderson-Darling processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 214-232. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a14/