Sums of independent random variables and the generalized Dickman laws
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 199-213

Voir la notice de l'article provenant de la source Math-Net.Ru

The probabilistic Dickman law, defined by the known Dickman function, and its generalized versions are considered. In the paper, we obtain a general criterion of the weak convergence to these laws for the distributions of sums of independent non-negative random variables within the series scheme in the classical setting. Moreover, we get a special criterion of the convergence for the case when the summing random variables have finite expectations.
@article{ZNSL_2022_515_a13,
     author = {K. A. Tregubova and A. A. Khartov},
     title = {Sums of independent random variables and the generalized {Dickman} laws},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--213},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/}
}
TY  - JOUR
AU  - K. A. Tregubova
AU  - A. A. Khartov
TI  - Sums of independent random variables and the generalized Dickman laws
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 199
EP  - 213
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/
LA  - ru
ID  - ZNSL_2022_515_a13
ER  - 
%0 Journal Article
%A K. A. Tregubova
%A A. A. Khartov
%T Sums of independent random variables and the generalized Dickman laws
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 199-213
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/
%G ru
%F ZNSL_2022_515_a13
K. A. Tregubova; A. A. Khartov. Sums of independent random variables and the generalized Dickman laws. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 199-213. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/