Sums of independent random variables and the generalized Dickman laws
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 199-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The probabilistic Dickman law, defined by the known Dickman function, and its generalized versions are considered. In the paper, we obtain a general criterion of the weak convergence to these laws for the distributions of sums of independent non-negative random variables within the series scheme in the classical setting. Moreover, we get a special criterion of the convergence for the case when the summing random variables have finite expectations.
			
            
            
            
          
        
      @article{ZNSL_2022_515_a13,
     author = {K. A. Tregubova and A. A. Khartov},
     title = {Sums of independent random variables and the generalized {Dickman} laws},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--213},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/}
}
                      
                      
                    TY - JOUR AU - K. A. Tregubova AU - A. A. Khartov TI - Sums of independent random variables and the generalized Dickman laws JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 199 EP - 213 VL - 515 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/ LA - ru ID - ZNSL_2022_515_a13 ER -
K. A. Tregubova; A. A. Khartov. Sums of independent random variables and the generalized Dickman laws. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 199-213. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a13/