Ultralarge deviations of Poisson Telecom processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 162-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the article, we consider the ultralarge deviations of Poisson Telecom processes which appear as limit distributions for the integral workload in a critical regime of a Poisson service system.
@article{ZNSL_2022_515_a10,
     author = {M. A. Lifshits and S. E. Nikitin},
     title = {Ultralarge deviations of {Poisson} {Telecom} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--179},
     year = {2022},
     volume = {515},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a10/}
}
TY  - JOUR
AU  - M. A. Lifshits
AU  - S. E. Nikitin
TI  - Ultralarge deviations of Poisson Telecom processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 162
EP  - 179
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a10/
LA  - ru
ID  - ZNSL_2022_515_a10
ER  - 
%0 Journal Article
%A M. A. Lifshits
%A S. E. Nikitin
%T Ultralarge deviations of Poisson Telecom processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 162-179
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a10/
%G ru
%F ZNSL_2022_515_a10
M. A. Lifshits; S. E. Nikitin. Ultralarge deviations of Poisson Telecom processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 162-179. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a10/

[1] S. Cohen, M. Taqqu, “Small and large scale behavior of the Poissonized Telecom Process”, Methodol. Comput. Appl. Probab., 6 (2004), 363–379 | DOI | MR

[2] R. Gaigalas, “A Poisson bridge between fractional Brownian motion and stable Lévy motion”, Stoch. Proc. Appl., 116 (2006), 447–462 | DOI | MR

[3] I. Kaj, Stochastic Modeling in Broadband Communications Systems, SIAM Monographs on Mathematical Modeling and Computation, 8, SIAM, Philadelphia, 2002 | MR

[4] I. Kaj, “Limiting fractal random processes in heavy-tailed systems”, Fractals in Engineering, New Trends in Theory and Applications, eds. J. Levy-Vehel, E. Lutton, Springer-Verlag, London, 2005, 199–218

[5] I. Kaj, “Aspects of Wireless Network Modeling Based on Poisson Point Processes”, Fields Institute Workshop on Applied Probability (Ottawa, Carleton University, 2006)

[6] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibrium, v. II, Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR

[7] M. Lifshits, Random Processes by Example, World Scientific, Singapore, 2014 | MR

[8] M. A. Lifshits, S. E. Nikitin, “Large deviations of Telecom processes”, J. Appl. Probab., 60:1 (2023), arXiv: 2107.11846