@article{ZNSL_2022_515_a10,
author = {M. A. Lifshits and S. E. Nikitin},
title = {Ultralarge deviations of {Poisson} {Telecom} processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--179},
year = {2022},
volume = {515},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a10/}
}
M. A. Lifshits; S. E. Nikitin. Ultralarge deviations of Poisson Telecom processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 162-179. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a10/
[1] S. Cohen, M. Taqqu, “Small and large scale behavior of the Poissonized Telecom Process”, Methodol. Comput. Appl. Probab., 6 (2004), 363–379 | DOI | MR
[2] R. Gaigalas, “A Poisson bridge between fractional Brownian motion and stable Lévy motion”, Stoch. Proc. Appl., 116 (2006), 447–462 | DOI | MR
[3] I. Kaj, Stochastic Modeling in Broadband Communications Systems, SIAM Monographs on Mathematical Modeling and Computation, 8, SIAM, Philadelphia, 2002 | MR
[4] I. Kaj, “Limiting fractal random processes in heavy-tailed systems”, Fractals in Engineering, New Trends in Theory and Applications, eds. J. Levy-Vehel, E. Lutton, Springer-Verlag, London, 2005, 199–218
[5] I. Kaj, “Aspects of Wireless Network Modeling Based on Poisson Point Processes”, Fields Institute Workshop on Applied Probability (Ottawa, Carleton University, 2006)
[6] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibrium, v. II, Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR
[7] M. Lifshits, Random Processes by Example, World Scientific, Singapore, 2014 | MR
[8] M. A. Lifshits, S. E. Nikitin, “Large deviations of Telecom processes”, J. Appl. Probab., 60:1 (2023), arXiv: 2107.11846