On power-sum kernels on symmetric groups
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note, we introduce a family of “power-sum” covariance functions and the corresponding Gaussian processes on symmetric groups $S_n$. Such processes are bi-invariant: the action of $S_n$ on itself from both sides does not change their finite-dimensional distributions. We show that the values of power-sum covariance functions can be efficiently calculated, and we also propose a method enabling approximate modeling of the corresponding processes with polynomial computational complexity. By doing this we provide the tools that are required to use the introduced family of processes for statistical modeling.
@article{ZNSL_2022_515_a1,
     author = {I. Azangulov and V. A. Borovitskiy and A. V. Smolensky},
     title = {On power-sum kernels on symmetric groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--29},
     year = {2022},
     volume = {515},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a1/}
}
TY  - JOUR
AU  - I. Azangulov
AU  - V. A. Borovitskiy
AU  - A. V. Smolensky
TI  - On power-sum kernels on symmetric groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 19
EP  - 29
VL  - 515
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a1/
LA  - ru
ID  - ZNSL_2022_515_a1
ER  - 
%0 Journal Article
%A I. Azangulov
%A V. A. Borovitskiy
%A A. V. Smolensky
%T On power-sum kernels on symmetric groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 19-29
%V 515
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a1/
%G ru
%F ZNSL_2022_515_a1
I. Azangulov; V. A. Borovitskiy; A. V. Smolensky. On power-sum kernels on symmetric groups. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 19-29. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a1/

[1] I. Azangulov, A. Smolensky, A. Terenin, V. Borovitskiy, Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the Compact Case, 2022, arXiv: 2208.14960

[2] F. Bachoc, B. Broto, F. Gamboa, J.-M. Loubes, “Gaussian field on the symmetric group: Prediction and learning”, Electronic J. Stat., 14:1 (2020), 503–546 | MR

[3] S. Cohen, J. Istas, Fractional fields and applications, Mathématiques et Applications, 73, Springer, 2013 | DOI | MR

[4] S. Cohen, M. Lifshits, “Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres”, ESAIM: Probability and Statist., 16 (2012), 165–221 | DOI | MR

[5] D. Corfield, H. Sati, U. Schreiber, Fundamental weight systems are quantum states, 2021, arXiv: 2105.02871

[6] S. Coveney, C. Corrado, C. H. Roney, D. O'Hare, S. E. Williams, M. D. O'Neill, S. A. Niederer, R. H. Clayton, J. E. Oakley, R. D. Wilkinson, “Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity”, Philosophical Transactions of the Royal Society A, 378:2173 (2020), 20190345 | DOI | MR

[7] P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Notes Monogr. Ser., 11, 1988 | MR

[8] P. Erdös, “On an Elementary Proof of Some Asymptotic Formulas in the Theory of Partitions”, Ann. Math., 43:3 (1942), 437–450 | DOI | MR

[9] P. J. Forrester, E. M. Rains, “Matrix averages relating to Ginibre ensembles”, J. Physics A: Math. and Theor., 42:38 (2009), 385205 | DOI | MR

[10] M. Hutchinson, A. Terenin, V. Borovitskiy, S. Takao, Y. Teh, M. Deisenroth, “Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels”, Advances in Neural Information Processing Systems, 34 (2021), 17160–17169

[11] J. Istas, “Spherical and Hyperbolic Fractional Brownian Motion”, Electronic Comm. Probab., 10 (2005), 254–262 | DOI | MR

[12] N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, L. Rozo, “Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels”, Conference on Robot Learning, 2022, 794–805

[13] D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching, Pearson Education, 1998 | MR

[14] A. Yu. Orlov, Tau Functions and Matrix Integrals, 2002

[15] J. P. Serre, Linear Representations of Finite Groups, Springer, 1977 | MR

[16] R. Stanley, S. Fomin, Enumerative Combinatorics, v. 2, Cambridge Stud. in Adv. Math., Cambridge University Press, 1997 | MR

[17] J. E. Taylor, R. J. Adler, “Euler characteristics for Gaussian fields on manifolds”, Ann. Probab., 31:2 (2003), 533–563 | DOI | MR

[18] A. Tiskin, “Fast RSK Correspondence by Doubling Search”, 30th Annual European Symposium on Algorithms (ESA 2022), Leibniz International Proceedings in Informatics (LIPIcs), 244, Schloss Dagstuhl–Leibniz–Zentrum fúr Informatik, 2022, 86:1–86:10 | MR

[19] A. M. Yaglom, “Second-order homogeneous random fields”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. 2, Contributions to Probability Theory, University of California Press, 1961 | MR

[20] U. Fulton, Dzh. Kharris, Teoriya predstavlenii. Nachalnyi kurs, MTs–NMO, 2017

[21] A. M. Yaglom, “Polozhitelno-opredelennye funktsii i odnorodnye sluchainye polya na gruppakh i odnorodnykh prostranstvakh”, Dokl. AN SSSR, 135:6 (1960), 1342–1345