@article{ZNSL_2022_515_a1,
author = {I. Azangulov and V. A. Borovitskiy and A. V. Smolensky},
title = {On power-sum kernels on symmetric groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--29},
year = {2022},
volume = {515},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a1/}
}
I. Azangulov; V. A. Borovitskiy; A. V. Smolensky. On power-sum kernels on symmetric groups. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 19-29. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a1/
[1] I. Azangulov, A. Smolensky, A. Terenin, V. Borovitskiy, Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the Compact Case, 2022, arXiv: 2208.14960
[2] F. Bachoc, B. Broto, F. Gamboa, J.-M. Loubes, “Gaussian field on the symmetric group: Prediction and learning”, Electronic J. Stat., 14:1 (2020), 503–546 | MR
[3] S. Cohen, J. Istas, Fractional fields and applications, Mathématiques et Applications, 73, Springer, 2013 | DOI | MR
[4] S. Cohen, M. Lifshits, “Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres”, ESAIM: Probability and Statist., 16 (2012), 165–221 | DOI | MR
[5] D. Corfield, H. Sati, U. Schreiber, Fundamental weight systems are quantum states, 2021, arXiv: 2105.02871
[6] S. Coveney, C. Corrado, C. H. Roney, D. O'Hare, S. E. Williams, M. D. O'Neill, S. A. Niederer, R. H. Clayton, J. E. Oakley, R. D. Wilkinson, “Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity”, Philosophical Transactions of the Royal Society A, 378:2173 (2020), 20190345 | DOI | MR
[7] P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Notes Monogr. Ser., 11, 1988 | MR
[8] P. Erdös, “On an Elementary Proof of Some Asymptotic Formulas in the Theory of Partitions”, Ann. Math., 43:3 (1942), 437–450 | DOI | MR
[9] P. J. Forrester, E. M. Rains, “Matrix averages relating to Ginibre ensembles”, J. Physics A: Math. and Theor., 42:38 (2009), 385205 | DOI | MR
[10] M. Hutchinson, A. Terenin, V. Borovitskiy, S. Takao, Y. Teh, M. Deisenroth, “Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels”, Advances in Neural Information Processing Systems, 34 (2021), 17160–17169
[11] J. Istas, “Spherical and Hyperbolic Fractional Brownian Motion”, Electronic Comm. Probab., 10 (2005), 254–262 | DOI | MR
[12] N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, L. Rozo, “Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels”, Conference on Robot Learning, 2022, 794–805
[13] D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching, Pearson Education, 1998 | MR
[14] A. Yu. Orlov, Tau Functions and Matrix Integrals, 2002
[15] J. P. Serre, Linear Representations of Finite Groups, Springer, 1977 | MR
[16] R. Stanley, S. Fomin, Enumerative Combinatorics, v. 2, Cambridge Stud. in Adv. Math., Cambridge University Press, 1997 | MR
[17] J. E. Taylor, R. J. Adler, “Euler characteristics for Gaussian fields on manifolds”, Ann. Probab., 31:2 (2003), 533–563 | DOI | MR
[18] A. Tiskin, “Fast RSK Correspondence by Doubling Search”, 30th Annual European Symposium on Algorithms (ESA 2022), Leibniz International Proceedings in Informatics (LIPIcs), 244, Schloss Dagstuhl–Leibniz–Zentrum fúr Informatik, 2022, 86:1–86:10 | MR
[19] A. M. Yaglom, “Second-order homogeneous random fields”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. 2, Contributions to Probability Theory, University of California Press, 1961 | MR
[20] U. Fulton, Dzh. Kharris, Teoriya predstavlenii. Nachalnyi kurs, MTs–NMO, 2017
[21] A. M. Yaglom, “Polozhitelno-opredelennye funktsii i odnorodnye sluchainye polya na gruppakh i odnorodnykh prostranstvakh”, Dokl. AN SSSR, 135:6 (1960), 1342–1345