A probabilistic representation of the fractional differential operator
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 5-18

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of Lévy processes that includes symmetric $\alpha$-stable processes for $\alpha \in (1,2)$. We obtain a family of stochastic operators using these processes and study the family's properties. We show that constructed stochastic operators approximate the fractional differential operator of order $\alpha$ for the spectral parameter with non-positive real part.
@article{ZNSL_2022_515_a0,
     author = {T. E. Abildaev},
     title = {A probabilistic representation of the fractional differential operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {515},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a0/}
}
TY  - JOUR
AU  - T. E. Abildaev
TI  - A probabilistic representation of the fractional differential operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 5
EP  - 18
VL  - 515
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a0/
LA  - ru
ID  - ZNSL_2022_515_a0
ER  - 
%0 Journal Article
%A T. E. Abildaev
%T A probabilistic representation of the fractional differential operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 5-18
%V 515
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a0/
%G ru
%F ZNSL_2022_515_a0
T. E. Abildaev. A probabilistic representation of the fractional differential operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 33, Tome 515 (2022), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2022_515_a0/