Classification of the total and regular graphs of three-point sets
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 167-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies the structures of the total and regular graphs of sets of three elements over fields of characteristic zero. The graphs themselves are classified up to isomorphism.
@article{ZNSL_2022_514_a9,
     author = {V. V. Promyslov},
     title = {Classification of the total and regular graphs of three-point sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--192},
     year = {2022},
     volume = {514},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a9/}
}
TY  - JOUR
AU  - V. V. Promyslov
TI  - Classification of the total and regular graphs of three-point sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 167
EP  - 192
VL  - 514
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a9/
LA  - ru
ID  - ZNSL_2022_514_a9
ER  - 
%0 Journal Article
%A V. V. Promyslov
%T Classification of the total and regular graphs of three-point sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 167-192
%V 514
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a9/
%G ru
%F ZNSL_2022_514_a9
V. V. Promyslov. Classification of the total and regular graphs of three-point sets. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 167-192. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a9/

[1] E. I. Bunina, A. V. Mikhalev, A. G. Pinus, Elementarnaya i blizkaya k nei logicheskie ekvivalentnosti klassicheskikh i universalnykh algebr, MTsNMO, M., 2015

[2] A. M. Maksaev, V. V. Promyslov, “O totalnom i regulyarnom grafakh mnogochlena”, Fund. prikl. mat., 23:4 (2021), 113–142 | MR

[3] V. V. Promyslov, “Klassifikatsiya regulyarnykh grafov trekhtochechnykh mnozhestv”, Intel. sistemy. Teoriya pril., 25:4 (2021), 205–208 | MR

[4] F. Kharari, Teoriya grafov, Mir, M., 1973

[5] S. Akbari, M. Jamaali, S. A. Seyed Fakhari, “The clique numbers of regular graphs of matrix algebras are finite”, Linear Algebra Appl., 431 (2009), 1715–1718 | DOI | MR

[6] D. F. Anderson, A. Badawi, “The total graph of a commutative ring”, J. Algebra, 320 (2008), 2706–2719 | DOI | MR

[7] S. Akbari, M. Aryapoor, M. Jamaali, “Chromatic number and clique number of subgraphs of regular graph of matrix algebras”, Linear Algebra Appl., 436 (2012), 2419–2424 | DOI | MR

[8] S. Akbari, F. Heydari, “The regular graph of a noncommutative ring”, Bull. Austral. Math. Soc., 89:1 (2014), 132–140 | DOI | MR

[9] P. J. Cameron, “Research problems from the BCC22 ”, Discrete Math., 311 (2011), 1074–1083 | DOI | MR

[10] A. E. Guterman, A. M. Maksaev, V. V. Promyslov, “Pairs of maps preserving singularity on subsets of matrix algebras”, Linear Algebra Appl., 644 (2022), 1–27 | DOI | MR

[11] U. Knauer, K. Knauer, Algebraic Graph Theory: Morphisms, Monoids and Matrices, 2nd Rev. and Ext. ed., de Gruyter, 2015 | MR

[12] I. Tomon, “On the chromatic number of regular graphs of matrix algebras”, Linear Algebra Appl., 475 (2015), 154–162 | DOI | MR

[13] J. Zhou, D. Wong, X. Ma, “Automorphism group of the total graph over a matrix ring”, Linear Multilinear Algebra, 65:3 (2017), 572–581 | DOI | MR