Length function and simultaneous triangularization of matrix pairs
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 126-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper links the simultaneous triangularization problem for matrix pairs with the Paz problem and known results on the length of the matrix algebra. The length function is applied to the Al'pin–Koreshkov algorithm, and it is demonstrated how to reduce its multiplicative complexity. An asymptotically better procedure for verifying the simultaneous triangularizability of a pair of complex matrices is provided. This procedure is based on results on the lengths of upper triangular matrix algebras. Also the definition of hereditary length of an algebra is introduced, and the problem of computing the hereditary lengths of matrix algebras is discussed.
@article{ZNSL_2022_514_a7,
     author = {O. V. Markova},
     title = {Length function and simultaneous triangularization of matrix pairs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--137},
     year = {2022},
     volume = {514},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a7/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - Length function and simultaneous triangularization of matrix pairs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 126
EP  - 137
VL  - 514
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a7/
LA  - ru
ID  - ZNSL_2022_514_a7
ER  - 
%0 Journal Article
%A O. V. Markova
%T Length function and simultaneous triangularization of matrix pairs
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 126-137
%V 514
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a7/
%G ru
%F ZNSL_2022_514_a7
O. V. Markova. Length function and simultaneous triangularization of matrix pairs. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 126-137. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a7/

[1] Yu. A. Alpin, N. A. Koreshkov, “Ob odnovremennoi triangulizuemosti matrits”, Matem. zametki, 68:5 (2000), 648–652 | MR

[2] O. V. Markova, “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fund. prikl. matem., 13:4 (2007), 165–197

[3] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. matem., 17:6 (2012), 65–173

[4] O. V. Markova, D. Yu. Novochadov, “Sistemy porozhdayuschikh polnoi matrichnoi algebry, soderzhaschie tsiklicheskie matritsy”, Zap. nauchn. semin. POMI, 504, 2021, 157–171

[5] J. Alman, V. Vassilevska Williams, “A refined laser method and faster matrix multiplication”, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 522–539 | MR

[6] G. Bourgeois, “Pairs of matrices, one of which commutes with their commutator”, Electron. J. Linear Algebra, 22 (2011), 593–597 | DOI | MR

[7] G. Bourgeois, “Common invariant subspace and commuting matrices”, Linear Algebra Appl., 438:7 (2013), 3030–3038 | DOI | MR

[8] Ho Yee Cheung, Tsz Chiu Kwok, Lap Chi Lau, “Fast matrix rank algorithms and applications”, J. ACM, 60:5 (2013), 31, 25 pp. | MR

[9] M. P. Drazin, J. W. Dungey, K. W. Gruenberg, “Some theorems on commutative matrices”, J. London Math. Soc., 26 (1951), 221–228 | DOI | MR

[10] A. E. Guterman, T. Laffey, O. V. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR

[11] A. E. Guterman, O. V. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR

[12] T. J. Laffey, “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR

[13] M. S. Lambrou, W. E. Longstaff, “On the lengths of pairs of complex matrices of size six”, Bull. Austral. Math. Soc., 80:2 (2009), 177–201 | DOI | MR

[14] W. E. Longstaff, “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | MR

[15] W. E. Longstaff, A. C. Niemeyer, Oreste Panaia, “On the lengths of pairs of complex matrices of size at most five”, Bull. Austral. Math. Soc., 73:3 (2006), 461–472 | DOI | MR

[16] W. E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR

[17] N. H. McCoy, “On the characteristic roots of matrix polynomials”, Bull. Amer. Math. Soc., 42 (1936), 592–600 | DOI | MR

[18] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR

[19] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR

[20] H. Radjavi, P. Rosenthal, Simultaneous triangularization, Springer, New York, NY, 2000 | MR

[21] Ya. Shitov, “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR

[22] A. J. M. Spencer, R. S. Rivlin, “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR