@article{ZNSL_2022_514_a7,
author = {O. V. Markova},
title = {Length function and simultaneous triangularization of matrix pairs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--137},
year = {2022},
volume = {514},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a7/}
}
O. V. Markova. Length function and simultaneous triangularization of matrix pairs. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 126-137. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a7/
[1] Yu. A. Alpin, N. A. Koreshkov, “Ob odnovremennoi triangulizuemosti matrits”, Matem. zametki, 68:5 (2000), 648–652 | MR
[2] O. V. Markova, “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fund. prikl. matem., 13:4 (2007), 165–197
[3] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. matem., 17:6 (2012), 65–173
[4] O. V. Markova, D. Yu. Novochadov, “Sistemy porozhdayuschikh polnoi matrichnoi algebry, soderzhaschie tsiklicheskie matritsy”, Zap. nauchn. semin. POMI, 504, 2021, 157–171
[5] J. Alman, V. Vassilevska Williams, “A refined laser method and faster matrix multiplication”, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 522–539 | MR
[6] G. Bourgeois, “Pairs of matrices, one of which commutes with their commutator”, Electron. J. Linear Algebra, 22 (2011), 593–597 | DOI | MR
[7] G. Bourgeois, “Common invariant subspace and commuting matrices”, Linear Algebra Appl., 438:7 (2013), 3030–3038 | DOI | MR
[8] Ho Yee Cheung, Tsz Chiu Kwok, Lap Chi Lau, “Fast matrix rank algorithms and applications”, J. ACM, 60:5 (2013), 31, 25 pp. | MR
[9] M. P. Drazin, J. W. Dungey, K. W. Gruenberg, “Some theorems on commutative matrices”, J. London Math. Soc., 26 (1951), 221–228 | DOI | MR
[10] A. E. Guterman, T. Laffey, O. V. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR
[11] A. E. Guterman, O. V. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR
[12] T. J. Laffey, “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR
[13] M. S. Lambrou, W. E. Longstaff, “On the lengths of pairs of complex matrices of size six”, Bull. Austral. Math. Soc., 80:2 (2009), 177–201 | DOI | MR
[14] W. E. Longstaff, “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | MR
[15] W. E. Longstaff, A. C. Niemeyer, Oreste Panaia, “On the lengths of pairs of complex matrices of size at most five”, Bull. Austral. Math. Soc., 73:3 (2006), 461–472 | DOI | MR
[16] W. E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR
[17] N. H. McCoy, “On the characteristic roots of matrix polynomials”, Bull. Amer. Math. Soc., 42 (1936), 592–600 | DOI | MR
[18] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR
[19] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR
[20] H. Radjavi, P. Rosenthal, Simultaneous triangularization, Springer, New York, NY, 2000 | MR
[21] Ya. Shitov, “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR
[22] A. J. M. Spencer, R. S. Rivlin, “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR