A method for solving the Fredholm integral equation of the first kind
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 113-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers a numerical method for solving the Fredholm integral equation of the first kind, the essence of which is to replace the original equation with the corresponding regularized equation of the second kind, which is then solved by the modified spline collocation method. The solution in this case is represented by a linear combination of minimal splines. The coefficients at the splines are computed using local approximation (in some cases, quasi-interpolation) methods. Results of numerical experiments are presented, which show that on model problems the proposed method results in sufficiently accurate approximations, and the use of minimal splines of a nonpolynomial form and related functionals can improve the approximation accuracy.
@article{ZNSL_2022_514_a6,
     author = {E. K. Kulikov and A. A. Makarov},
     title = {A method for solving the {Fredholm} integral equation of the first kind},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--125},
     year = {2022},
     volume = {514},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/}
}
TY  - JOUR
AU  - E. K. Kulikov
AU  - A. A. Makarov
TI  - A method for solving the Fredholm integral equation of the first kind
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 113
EP  - 125
VL  - 514
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/
LA  - ru
ID  - ZNSL_2022_514_a6
ER  - 
%0 Journal Article
%A E. K. Kulikov
%A A. A. Makarov
%T A method for solving the Fredholm integral equation of the first kind
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 113-125
%V 514
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/
%G ru
%F ZNSL_2022_514_a6
E. K. Kulikov; A. A. Makarov. A method for solving the Fredholm integral equation of the first kind. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 113-125. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/

[1] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, M., 1976 | MR

[2] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR

[3] C. de Boor, A Practical Guide to Splines, revised edition, Springer-Verlag, New York, 2001 | MR

[4] I. G. Burova, Yu. K. Demyanovich, Minimalnye splainy i ikh prilozheniya, Izd-vo S.-Peterb. un-ta, 2010

[5] L. L. Schumaker, Spline Functions: Computational Methods, Society for Industrial and Applied Mathematics, 2015 | MR

[6] M. Buhmann, J. Jäger, Quasi-Interpolation, Cambridge University Press, 2022 | MR

[7] C. Allouch, P. Sablonniere, D. Sbibih, “A modified Kulkarni's method based on a discrete spline quasi-interpolant”, Math. Comput. Simul., 81 (2011), 1991–2000 | DOI | MR

[8] C. Dagnino, S. Remogna, P. Sablonniere, “On the solution of Fredholm integral equation based on spline quasi-interpolating projectors”, BIT, 54:4 (2014), 979–1008 | DOI | MR

[9] I. Sloan, “Improvement by iteration for compact operator equations”, Math. Comput., 30 (1976), 758–764 | DOI | MR

[10] R. Kulkarni, “On improvement of the iterated Galerkin solution of the second kind integral equations”, J. Numer. Math., 13 (2005), 205–218 | DOI | MR

[11] D. Černá, V. Finěk, “Galerkin method with new quadratic spline wavelets for integral and integro-differential equations”, J. Comput. Appl. Math., 363 (2020), 426–443 | DOI | MR

[12] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Comput. Sci., 10187, 2017, 448–455 | DOI | MR

[13] E. K. Kulikov, A. A. Makarov, “O postroenii approksimatsionnykh funktsionalov dlya minimalnykh splainov”, Zap. nauchn. semin. POMI, 504, 2021, 136–156

[14] E. K. Kulikov, A. A. Makarov, “O modifitsirovannom metode splain-kollokatsii resheniya integralnogo uravneniya Fredgolma”, Diff. ur. prots. upr., 2021, no. 4, 211–223

[15] A. N. Tikhonov, “On the solution of incorrectly posed problem and the method of regularization”, Soviet Math., 4 (1963), 1035–1038 | MR

[16] I. G. Burova, V. M. Ryabov, “On the solution of Fredholm integral equation of the first kind”, WSEAS Trans. Math., 19 (2021), 699–708 | DOI

[17] A. V. Lebedeva, V. M. Ryabov, “O regulyarizatsii resheniya integralnykh uravnenii pervogo roda s pomoschyu kvadraturnykh formul”, Vestn. S.-Peterb. un-ta. Ser. 1, 8 (66):4 (2021), 593–599 | MR

[18] A. Wazwaz, “The regularization method for Fredholm integral equations of the first kind”, Comput. Math. Appl., 61:10 (2011), 2981–2986 | DOI | MR

[19] D. Yuan, X. Zhang, “An overview of numerical methods for the first kind Fredholm integral equation”, SN Appl. Sci., 10 (2019), 1178–1190 | DOI

[20] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38

[21] E. K. Kulikov, A. A. Makarov, “O kvadratichnykh minimalnykh splainakh s kratnymi uzlami”, Zap. nauchn. semin. POMI, 482, 2019, 220–230

[22] E. K. Kulikov, A. A. Makarov, “On de Boor-Fix type functionals for minimal splines”, Topics in Classical and Modern Analysis, 2019, 211–225 | DOI | MR

[23] P. Sablonniere, “Quadratic spline quasi-interpolants on bounded domains of ${\mathbb R}^{d}$, $d = 1, 2, 3$”, Rend. Sem. Mat., 61:3 (2003), 229–246 | MR

[24] E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Zap. nauchn. semin. POMI, 472, 2018, 179–194