@article{ZNSL_2022_514_a6,
author = {E. K. Kulikov and A. A. Makarov},
title = {A method for solving the {Fredholm} integral equation of the first kind},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--125},
year = {2022},
volume = {514},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/}
}
E. K. Kulikov; A. A. Makarov. A method for solving the Fredholm integral equation of the first kind. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 113-125. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/
[1] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, M., 1976 | MR
[2] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR
[3] C. de Boor, A Practical Guide to Splines, revised edition, Springer-Verlag, New York, 2001 | MR
[4] I. G. Burova, Yu. K. Demyanovich, Minimalnye splainy i ikh prilozheniya, Izd-vo S.-Peterb. un-ta, 2010
[5] L. L. Schumaker, Spline Functions: Computational Methods, Society for Industrial and Applied Mathematics, 2015 | MR
[6] M. Buhmann, J. Jäger, Quasi-Interpolation, Cambridge University Press, 2022 | MR
[7] C. Allouch, P. Sablonniere, D. Sbibih, “A modified Kulkarni's method based on a discrete spline quasi-interpolant”, Math. Comput. Simul., 81 (2011), 1991–2000 | DOI | MR
[8] C. Dagnino, S. Remogna, P. Sablonniere, “On the solution of Fredholm integral equation based on spline quasi-interpolating projectors”, BIT, 54:4 (2014), 979–1008 | DOI | MR
[9] I. Sloan, “Improvement by iteration for compact operator equations”, Math. Comput., 30 (1976), 758–764 | DOI | MR
[10] R. Kulkarni, “On improvement of the iterated Galerkin solution of the second kind integral equations”, J. Numer. Math., 13 (2005), 205–218 | DOI | MR
[11] D. Černá, V. Finěk, “Galerkin method with new quadratic spline wavelets for integral and integro-differential equations”, J. Comput. Appl. Math., 363 (2020), 426–443 | DOI | MR
[12] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Comput. Sci., 10187, 2017, 448–455 | DOI | MR
[13] E. K. Kulikov, A. A. Makarov, “O postroenii approksimatsionnykh funktsionalov dlya minimalnykh splainov”, Zap. nauchn. semin. POMI, 504, 2021, 136–156
[14] E. K. Kulikov, A. A. Makarov, “O modifitsirovannom metode splain-kollokatsii resheniya integralnogo uravneniya Fredgolma”, Diff. ur. prots. upr., 2021, no. 4, 211–223
[15] A. N. Tikhonov, “On the solution of incorrectly posed problem and the method of regularization”, Soviet Math., 4 (1963), 1035–1038 | MR
[16] I. G. Burova, V. M. Ryabov, “On the solution of Fredholm integral equation of the first kind”, WSEAS Trans. Math., 19 (2021), 699–708 | DOI
[17] A. V. Lebedeva, V. M. Ryabov, “O regulyarizatsii resheniya integralnykh uravnenii pervogo roda s pomoschyu kvadraturnykh formul”, Vestn. S.-Peterb. un-ta. Ser. 1, 8 (66):4 (2021), 593–599 | MR
[18] A. Wazwaz, “The regularization method for Fredholm integral equations of the first kind”, Comput. Math. Appl., 61:10 (2011), 2981–2986 | DOI | MR
[19] D. Yuan, X. Zhang, “An overview of numerical methods for the first kind Fredholm integral equation”, SN Appl. Sci., 10 (2019), 1178–1190 | DOI
[20] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38
[21] E. K. Kulikov, A. A. Makarov, “O kvadratichnykh minimalnykh splainakh s kratnymi uzlami”, Zap. nauchn. semin. POMI, 482, 2019, 220–230
[22] E. K. Kulikov, A. A. Makarov, “On de Boor-Fix type functionals for minimal splines”, Topics in Classical and Modern Analysis, 2019, 211–225 | DOI | MR
[23] P. Sablonniere, “Quadratic spline quasi-interpolants on bounded domains of ${\mathbb R}^{d}$, $d = 1, 2, 3$”, Rend. Sem. Mat., 61:3 (2003), 229–246 | MR
[24] E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Zap. nauchn. semin. POMI, 472, 2018, 179–194