A method for solving the Fredholm integral equation of the first kind
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 113-125

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a numerical method for solving the Fredholm integral equation of the first kind, the essence of which is to replace the original equation with the corresponding regularized equation of the second kind, which is then solved by the modified spline collocation method. The solution in this case is represented by a linear combination of minimal splines. The coefficients at the splines are computed using local approximation (in some cases, quasi-interpolation) methods. Results of numerical experiments are presented, which show that on model problems the proposed method results in sufficiently accurate approximations, and the use of minimal splines of a nonpolynomial form and related functionals can improve the approximation accuracy.
@article{ZNSL_2022_514_a6,
     author = {E. K. Kulikov and A. A. Makarov},
     title = {A method for solving the {Fredholm} integral equation of the first kind},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {514},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/}
}
TY  - JOUR
AU  - E. K. Kulikov
AU  - A. A. Makarov
TI  - A method for solving the Fredholm integral equation of the first kind
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 113
EP  - 125
VL  - 514
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/
LA  - ru
ID  - ZNSL_2022_514_a6
ER  - 
%0 Journal Article
%A E. K. Kulikov
%A A. A. Makarov
%T A method for solving the Fredholm integral equation of the first kind
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 113-125
%V 514
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/
%G ru
%F ZNSL_2022_514_a6
E. K. Kulikov; A. A. Makarov. A method for solving the Fredholm integral equation of the first kind. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 113-125. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a6/