On SDD$_1$ matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 88-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper continues the study of the recently introduced class of SDD$_1$ matrices. The class of general SDD$_1$ matrices and three its subclasses are considered. In particular, it is shown that SDD$_1$ matrices are nonsingular $\mathcal{H}$-matrices. Also parameter-free upper bounds for the $l_\infty$-norm of the inverses to SDD$_1$ matrices are derived. The block triangular form to which any SDD$_1$ matrix can be brought by a symmetric permutation of its rows and columns is described.
@article{ZNSL_2022_514_a5,
     author = {L. Yu. Kolotilina},
     title = {On {SDD}$_1$ matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--112},
     year = {2022},
     volume = {514},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On SDD$_1$ matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 88
EP  - 112
VL  - 514
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/
LA  - ru
ID  - ZNSL_2022_514_a5
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On SDD$_1$ matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 88-112
%V 514
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/
%G ru
%F ZNSL_2022_514_a5
L. Yu. Kolotilina. On SDD$_1$ matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 88-112. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/

[1] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131

[2] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102

[3] L. Yu. Kolotilina, “Verkhnie otsenki dlya $\|A^{-1} Q\|_\infty$”, Zap. nauchn. semin. POMI, 514, 2022, 77–87

[4] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR

[5] X. Cheng, Y. Li, L. Liu, Y. Wang, “Infinity norm upper bounds for the inverse of SDD$_1$ matrices”, AIMS Math., 7:5 (2022), 8847–8860 | DOI | MR

[6] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR

[7] P. F. Dai, “A note on diagonal dominance, Schur complements and some classes of H-matrices and P-matrices”, Adv. Comput. Math., 42 (2016), 1–4 | DOI | MR

[8] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonal dominant and M-matrices”, Linear Algebra Appl., 169 (1992), 257–268 | DOI | MR

[9] Y. Li, Y. Wang, “Schur complement-based infinity norm bounds for the inverse of GDSDD matrices”, Mathematics, 10 (2022), 186 | DOI | MR

[10] J. Liu, Y. Huang, F. Zhang, “The Schur complements of generalized doubly diagonally dominant matrices”, Linear Algebra Appl., 378 (2004), 231–244 | DOI | MR

[11] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of $SDD$ and ${\mathcal S}-SDD$ matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR

[12] A. M. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR

[13] J. M. Peña, “Diagonal dominance, Schur complements and some classes of $H$-matrices and P-matrices”, Adv. Comput. Math., 35 (2011), 357–373 | DOI | MR

[14] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR

[15] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR

[16] X. R. Yong, “Two properties of diagonally dominant matrices”, Numer. Linear Algebra, 3 (1996), 173–177 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR