On SDD$_1$ matrices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 88-112
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper continues the study of the recently introduced class of SDD$_1$ matrices. The class of general SDD$_1$ matrices and three its subclasses are considered. In particular, it is shown that SDD$_1$ matrices are nonsingular $\mathcal{H}$-matrices. Also parameter-free upper bounds for the $l_\infty$-norm of the inverses to SDD$_1$ matrices are derived. The block triangular form to which any SDD$_1$ matrix can be brought by a symmetric permutation of its rows and columns is described.
			
            
            
            
          
        
      @article{ZNSL_2022_514_a5,
     author = {L. Yu. Kolotilina},
     title = {On {SDD}$_1$ matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--112},
     publisher = {mathdoc},
     volume = {514},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/}
}
                      
                      
                    L. Yu. Kolotilina. On SDD$_1$ matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 88-112. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/