On SDD$_1$ matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 88-112

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the study of the recently introduced class of SDD$_1$ matrices. The class of general SDD$_1$ matrices and three its subclasses are considered. In particular, it is shown that SDD$_1$ matrices are nonsingular $\mathcal{H}$-matrices. Also parameter-free upper bounds for the $l_\infty$-norm of the inverses to SDD$_1$ matrices are derived. The block triangular form to which any SDD$_1$ matrix can be brought by a symmetric permutation of its rows and columns is described.
@article{ZNSL_2022_514_a5,
     author = {L. Yu. Kolotilina},
     title = {On {SDD}$_1$ matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--112},
     publisher = {mathdoc},
     volume = {514},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On SDD$_1$ matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 88
EP  - 112
VL  - 514
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/
LA  - ru
ID  - ZNSL_2022_514_a5
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On SDD$_1$ matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 88-112
%V 514
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/
%G ru
%F ZNSL_2022_514_a5
L. Yu. Kolotilina. On SDD$_1$ matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 88-112. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a5/