@article{ZNSL_2022_514_a3,
author = {V. P. Ilin},
title = {Multigrid methods of incomplete factorization in {Krylov} subspaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--76},
year = {2022},
volume = {514},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a3/}
}
V. P. Ilin. Multigrid methods of incomplete factorization in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 61-76. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a3/
[1] R. P. Fedorenko, “O skorosti skhodimosti odnogo integralnogo protsessa”, Zh. vychisl. mat. mat. fiz., 4:3 (1964), 559–564
[2] N. S. Bakhvalov, “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operatora”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 861–893
[3] F. A. Bornemann, P. Deuflhard, “The cascadic multigrid methods for elliptic problems”, Numer. Math., 75:2 (1996), 135–152 | DOI | MR
[4] V. P. Ilin, “Ob odnom variante mnogosetochnogo metoda”, Sib. mat. zh., 26:2 (1985), 102–107 | MR
[5] V. V. Shaidurov, “Some estimates of the rate of convergence for the cascadic conjugate-gradient method”, J. Comput. Math. Appl., 31:4/5 (1996), 161–171 | DOI | MR
[6] A. Brandt, “Algebraic multigrid theory: the symmetric case”, J. Appl. Math. Comput., 1986, no. 19, 23–56 | DOI | MR
[7] Y. Saad, Iterative methods for sparse linear systems, 2nd edn., SIAM, 2003 | MR
[8] M. A. Olshanskii, “Analiz mnogosetochnogo metoda dlya uravnenii konvektsii-diffuzii s kraevymi usloviyami Dirikhle”, Zh. vychisl. mat. mat. fiz., 44:8 (2004), 1450–1479 | MR
[9] Y. Notay, “Algebraic multigrid and algebraic multilevel methods: a theoretical comparison”, Numer. Linear Algebra Arrl., 12 (2005), 419–451 | DOI | MR
[10] R. Bank, R. Falgout, T. Jones, T. Manteuffel, S. McCormick, J. Ruge, “Algebraic multigrid domain and range decomposition (AMG-DD/AMG-RD)”, SIAM J. Sci. Comput., 37 (2015), 113–136 | DOI | MR
[11] Y. V. Vassilevski, M. A. Olshanskii, Short course on multi-grid and domain decomposition methods, MAKS Press Publ., M., 2007
[12] P. Vanek, “Smoothed prolongation multigrid with rapid coarsening and massive smoothing”, Appl. Math., 57:1 (2012), 1–10 | DOI | MR
[13] M. Brezina, R. Falgout, S. Maclachlani, T. Manteuffel, S. Mccormjcki, J. Rugei, “Adaptive smoothed aggregation (ASA)”, SIAM J. Sci. Somput., 25:6 (2004), 1896–1920 | DOI | MR
[14] Y. Notay, Analysis of two-grid methods: the nonnormal case, Report GANMN 18-01, 2018 | MR
[15] Y. Notay, A. Napov, “A massively parallel solver for discrete Poisson-like problems”, J. Comp. Phys., 231 (2015), 237–250 | DOI | MR
[16] Y. Notay, A. A. Napov, “An efficient multigrid method for graph Laplacian systems II: Robust aggregation”, SIAM J. Sci. Comput., 39:5 (2017), 379–403 | DOI | MR
[17] J. Xu, L. Zikatanov, Algebraic Multigrid Methods, Cambridge University Press, 2017 | MR
[18] Ya. L. Gureva, V. P. Ilin, A. V. Petukhov, “O mnogosetochnykh metodakh resheniya dvumernykh kraevykh zadach”, Zap. nauchn. semin. POMI, 482, 2019, 14–27
[19] D. Demidov, “AMGCL: An efficient, flexible, and extensible algebraic multigrid implementation”, Lobachevskii J. Math., 40:5 (2019), 535–546 | DOI | MR
[20] V. P. Ilin, “Iteratsionnye predobuslovlennye metody v podprostranstvakh Krylova: tendentsii XXI veka”, Zh. vychisl. mat. mat. fiz., 61:11 (2021), 1786–1813
[21] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, Izd-vo SO RAN, Novosibirsk, 2017
[22] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007