Multigrid methods of incomplete factorization in Krylov subspaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 61-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Ilin V. P. Multigrid methods of incomplete factorization in Krylov subspaces. The paper studies multigrid methods for solving systems of linear algebraic equations resulting from the seven-point discretization of the three-dimensional Dirichlet problem for an elliptic differential equation of the second order in a parallepiped domain on a regular grid. The algorithms suggested are presented as special iteration processes of incomplete factorization in Krylov subspaces with a hierarchical recursive vector structure that corresponds to a sequence of embedded grids and gives rise to a block tridiagonal recursive representation of the coefficient matrix of the original linear algebraic system. The convergence of iterations is enhanced by using the principle of compensation of the row sums and also the symmetric successive block overrelaxation. An arbitrary m-grid method is defined recursively, based on the two-grid method. For simplicity, the algorithms are considered for linear systems with Stieltjes coefficient matrices. Issues related to generalization of the algorithms to larger classes of problems and, in particular, those with unsymmetric matrices are discussed.
@article{ZNSL_2022_514_a3,
     author = {V. P. Ilin},
     title = {Multigrid methods of incomplete factorization in {Krylov} subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--76},
     year = {2022},
     volume = {514},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a3/}
}
TY  - JOUR
AU  - V. P. Ilin
TI  - Multigrid methods of incomplete factorization in Krylov subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 61
EP  - 76
VL  - 514
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a3/
LA  - ru
ID  - ZNSL_2022_514_a3
ER  - 
%0 Journal Article
%A V. P. Ilin
%T Multigrid methods of incomplete factorization in Krylov subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 61-76
%V 514
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a3/
%G ru
%F ZNSL_2022_514_a3
V. P. Ilin. Multigrid methods of incomplete factorization in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 61-76. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a3/

[1] R. P. Fedorenko, “O skorosti skhodimosti odnogo integralnogo protsessa”, Zh. vychisl. mat. mat. fiz., 4:3 (1964), 559–564

[2] N. S. Bakhvalov, “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operatora”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 861–893

[3] F. A. Bornemann, P. Deuflhard, “The cascadic multigrid methods for elliptic problems”, Numer. Math., 75:2 (1996), 135–152 | DOI | MR

[4] V. P. Ilin, “Ob odnom variante mnogosetochnogo metoda”, Sib. mat. zh., 26:2 (1985), 102–107 | MR

[5] V. V. Shaidurov, “Some estimates of the rate of convergence for the cascadic conjugate-gradient method”, J. Comput. Math. Appl., 31:4/5 (1996), 161–171 | DOI | MR

[6] A. Brandt, “Algebraic multigrid theory: the symmetric case”, J. Appl. Math. Comput., 1986, no. 19, 23–56 | DOI | MR

[7] Y. Saad, Iterative methods for sparse linear systems, 2nd edn., SIAM, 2003 | MR

[8] M. A. Olshanskii, “Analiz mnogosetochnogo metoda dlya uravnenii konvektsii-diffuzii s kraevymi usloviyami Dirikhle”, Zh. vychisl. mat. mat. fiz., 44:8 (2004), 1450–1479 | MR

[9] Y. Notay, “Algebraic multigrid and algebraic multilevel methods: a theoretical comparison”, Numer. Linear Algebra Arrl., 12 (2005), 419–451 | DOI | MR

[10] R. Bank, R. Falgout, T. Jones, T. Manteuffel, S. McCormick, J. Ruge, “Algebraic multigrid domain and range decomposition (AMG-DD/AMG-RD)”, SIAM J. Sci. Comput., 37 (2015), 113–136 | DOI | MR

[11] Y. V. Vassilevski, M. A. Olshanskii, Short course on multi-grid and domain decomposition methods, MAKS Press Publ., M., 2007

[12] P. Vanek, “Smoothed prolongation multigrid with rapid coarsening and massive smoothing”, Appl. Math., 57:1 (2012), 1–10 | DOI | MR

[13] M. Brezina, R. Falgout, S. Maclachlani, T. Manteuffel, S. Mccormjcki, J. Rugei, “Adaptive smoothed aggregation (ASA)”, SIAM J. Sci. Somput., 25:6 (2004), 1896–1920 | DOI | MR

[14] Y. Notay, Analysis of two-grid methods: the nonnormal case, Report GANMN 18-01, 2018 | MR

[15] Y. Notay, A. Napov, “A massively parallel solver for discrete Poisson-like problems”, J. Comp. Phys., 231 (2015), 237–250 | DOI | MR

[16] Y. Notay, A. A. Napov, “An efficient multigrid method for graph Laplacian systems II: Robust aggregation”, SIAM J. Sci. Comput., 39:5 (2017), 379–403 | DOI | MR

[17] J. Xu, L. Zikatanov, Algebraic Multigrid Methods, Cambridge University Press, 2017 | MR

[18] Ya. L. Gureva, V. P. Ilin, A. V. Petukhov, “O mnogosetochnykh metodakh resheniya dvumernykh kraevykh zadach”, Zap. nauchn. semin. POMI, 482, 2019, 14–27

[19] D. Demidov, “AMGCL: An efficient, flexible, and extensible algebraic multigrid implementation”, Lobachevskii J. Math., 40:5 (2019), 535–546 | DOI | MR

[20] V. P. Ilin, “Iteratsionnye predobuslovlennye metody v podprostranstvakh Krylova: tendentsii XXI veka”, Zh. vychisl. mat. mat. fiz., 61:11 (2021), 1786–1813

[21] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, Izd-vo SO RAN, Novosibirsk, 2017

[22] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007