@article{ZNSL_2022_514_a1,
author = {S. A. Zhilina},
title = {On doubly alternative zero divisors in {Cayley{\textendash}Dickson} algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--54},
year = {2022},
volume = {514},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a1/}
}
S. A. Zhilina. On doubly alternative zero divisors in Cayley–Dickson algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 18-54. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a1/
[1] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauchn. semin. POMI, 472, 2018, 44–75
[2] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii algebry sedenionov”, Zap. nauchn. semin. POMI, 496, 2020, 61–86
[3] A. E. Guterman, S. A. Zhilina, “Kontr-algebry Keli–Diksona: dvazhdy alternativnye deliteli nulya i grafy otnoshenii”, Fund. prikl. mat., 23:3 (2020), 95–129 | MR
[4] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[5] S. A. Zhilina, “Grafy otnoshenii algebry kontrsedenionov”, Zap. nauchn. semin. POMI, 482 (2019), 87–113
[6] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2001), 145–205 | DOI | MR
[7] L. Bentz, D. Tray, “Subalgebras of the split octonions”, Adv. Appl. Clifford Alg., 28:2 (2018), 40 | DOI | MR
[8] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley–Dickson algebras”, Comm. Algebra, 36:2 (2008), 632–664 | DOI | MR
[9] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley–Dickson algebras II”, Bol. Soc. Mat. Mex., 13:2 (2007), 269–292 | MR
[10] G. Dolinar, B. Kuzma, N. Stopar, “Characterization of orthomaps on the Cayley plane”, Aeq. Math., 92:2 (2018), 243–265 | DOI | MR
[11] G. Dolinar, B. Kuzma, N. Stopar, “The orthogonality relation classifies formally real simple Jordan algebras”, Comm. Algebra, 48:6 (2020), 2274–2292 | DOI | MR
[12] P. Eakin, A. Sathaye, “On automorphisms and derivations of Cayley–Dickson algebras”, J. Algebra, 129:2 (1990), 263–278 | DOI | MR
[13] N. Jacobson, “Composition algebras and their automorphisms”, Rend. Circ. Mat. Palermo, 7 (1958), 55–80 | DOI | MR
[14] B. Kuzma, “Dimensions of complex Hilbert spaces are determined by the commutativity relation”, J. Operator Theory, 79:1 (2018), 201–211 | MR
[15] K. McCrimmon, A taste of Jordan algebras, Springer-Verlag, New York, 2004 | MR
[16] G. Moreno, “The zero divisors of the Cayley–Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex. (tercera ser.), 4:1 (1998), 13–28 | MR
[17] G. Moreno, “Alternative elements in the Cayley-Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebañski, World Sci. Publ, Hackensack, NJ, 2006, 333–346 | DOI | MR
[18] G. Moreno, Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517
[19] R. Moufang, “Zur Structur von Alternativekörpern”, Math. Ann., 110 (1935), 416–430 | DOI | MR
[20] A. Pixton, “Alternators in the Cayley–Dickson algebras”, Forum Math., 21:5 (2009), 853–869 | DOI | MR
[21] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR
[22] S. Zhilina, “Orthogonality graphs of real Cayley–Dickson algebras. Part I: Doubly alternative zero divisors and their hexagons”, Int. J. Algebra Comput., 31:4 (2021), 663–689 | DOI | MR
[23] S. Zhilina, “Orthogonality graphs of real Cayley–Dickson algebras. Part II: The subgraph on pairs of basis elements”, Int. J. Algebra Comput., 31:4 (2021), 691–725 | DOI | MR