An upper bound for the chainable index
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 5-17
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers the chainable index of a square matrix of order $n$ and proves that it does not exceed $n-1$. Also it is demonstrated that every integer in between $0$ and $n-1$ is a value of the chainable index.
@article{ZNSL_2022_514_a0,
author = {Yu. A. Alpin and A. E. Guterman and E. R. Shafeev},
title = {An upper bound for the chainable index},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
publisher = {mathdoc},
volume = {514},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/}
}
Yu. A. Alpin; A. E. Guterman; E. R. Shafeev. An upper bound for the chainable index. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/