An upper bound for the chainable index
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the chainable index of a square matrix of order $n$ and proves that it does not exceed $n-1$. Also it is demonstrated that every integer in between $0$ and $n-1$ is a value of the chainable index.
@article{ZNSL_2022_514_a0,
     author = {Yu. A. Alpin and A. E. Guterman and E. R. Shafeev},
     title = {An upper bound for the chainable index},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {514},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - A. E. Guterman
AU  - E. R. Shafeev
TI  - An upper bound for the chainable index
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 5
EP  - 17
VL  - 514
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/
LA  - ru
ID  - ZNSL_2022_514_a0
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A A. E. Guterman
%A E. R. Shafeev
%T An upper bound for the chainable index
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 5-17
%V 514
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/
%G ru
%F ZNSL_2022_514_a0
Yu. A. Alpin; A. E. Guterman; E. R. Shafeev. An upper bound for the chainable index. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/