An upper bound for the chainable index
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 5-17
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper considers the chainable index of a square matrix of order $n$ and proves that it does not exceed $n-1$. Also it is demonstrated that every integer in between $0$ and $n-1$ is a value of the chainable index.
@article{ZNSL_2022_514_a0,
author = {Yu. A. Alpin and A. E. Guterman and E. R. Shafeev},
title = {An upper bound for the chainable index},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
year = {2022},
volume = {514},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/}
}
Yu. A. Alpin; A. E. Guterman; E. R. Shafeev. An upper bound for the chainable index. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a0/
[1] Yu. A. Alpin, I. V. Bashkin, “Neotritsatelnye tsepnye matritsy”, Zap. nauchn. semin. POMI, 496, 2020, 5–25
[2] Yu. A. Alpin, I. V. Bashkin, “Neotritsatelnye tsepnye matritsy i uslovie Kolmogorova”, Zap. nauchn. semin. POMI, 504, 2021, 5–20
[3] V. N. Sachkov, V. E. Tarakanov, Kombinatorika neotritsatelnykh matrits, Izd-vo TVP, 2000 | MR
[4] D. J. Hartfiel, C. J. Maxson, “The chainable matrix, a special combinatorial matrix”, Discrete Math., 12 (1975), 245–256 | DOI | MR
[5] R. Sinkhorn, P. Knopp, “Problems involving diagonal products in nonnegative matrices”, Trans. Amer. Math. Soc., 136 (1969), 67–75 | DOI | MR
[6] H. Wielandt, “Unzerlegbare, nicht negative Matrizen”, Math. Zeit., 52:1 (1950), 642–648 | DOI | MR