Construction of convergence rings of a multidimensional complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 139-146
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A criterion for the admissibility of a minimal monoid containing a given allowable set of multiindices is proved. In addition, an algorithm for constructing a convergence ring of a multidimensional complete field containing a given convergence set is proposed.
@article{ZNSL_2022_513_a9,
     author = {A. I. Madunts},
     title = {Construction of convergence rings of a multidimensional complete field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--146},
     year = {2022},
     volume = {513},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Construction of convergence rings of a multidimensional complete field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 139
EP  - 146
VL  - 513
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/
LA  - ru
ID  - ZNSL_2022_513_a9
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Construction of convergence rings of a multidimensional complete field
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 139-146
%V 513
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/
%G ru
%F ZNSL_2022_513_a9
A. I. Madunts. Construction of convergence rings of a multidimensional complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 139-146. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/

[1] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Tr. S.-P. mat. obsch., 3 (1994), 215–234

[2] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Tr. S.-P. mat. obsch., 3 (1994), 4–46

[3] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. semin. POMI, 272, 2000, 186–196

[4] A. I. Madunts, “Klassifikatsiya obobschennykh formalnykh grupp Lyubina-Teita nad mnogomernymi lokalnymi polyami”, Zap. nauchn. semin. POMI, 405, no. 31, 2017, 91–97

[5] A. I. Madunts, “Koltsa, porozhdennye mnozhestvami skhodimosti mnogomernogo polnogo polya”, Zap. nauchn. semin. POMI, 500, 2021, 149–157 | MR

[6] A. I. Madunts, “Mnozhestva skhodimosti mnogomernogo polnogo polya”, Zap. nauchn. semin. POMI, 492, 2020, 125–133

[7] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Avtoreferat diss. na soiskanie uch. stepeni kand. fiz.-mat. nauk, S.-Peterburg, 1995, 14 pp.

[8] A. I. Madunts, S. V. Vostokov, R. P. Vostokova, “Formalnye gruppy nad podkoltsami koltsa tselykh mnogomernogo lokalnogo polya”, Vestnik S.-P. un-ta, Matematika. Mekhanika. Astronomiya, 6:1 (2019), 88–97 | MR

[9] A. N. Parshin, “Abelevy nakrytiya arifmeticheskikh skhem”, Dokl. AN SSSR. Ser. mat., 243 (1978), 855–858

[10] A. N. Parshin, “K arifmetike dvumernykh skhem. 1. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40 (1976), 736–773

[11] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Tr. MIAN, 165, 1984, 143–170 | MR