Construction of convergence rings of a multidimensional complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 139-146
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for the admissibility of a minimal monoid containing a given allowable set of multiindices is proved. In addition, an algorithm for constructing a convergence ring of a multidimensional complete field containing a given convergence set is proposed.
@article{ZNSL_2022_513_a9,
author = {A. I. Madunts},
title = {Construction of convergence rings of a multidimensional complete field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--146},
publisher = {mathdoc},
volume = {513},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/}
}
A. I. Madunts. Construction of convergence rings of a multidimensional complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 139-146. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/