Construction of convergence rings of a multidimensional complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 139-146

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the admissibility of a minimal monoid containing a given allowable set of multiindices is proved. In addition, an algorithm for constructing a convergence ring of a multidimensional complete field containing a given convergence set is proposed.
@article{ZNSL_2022_513_a9,
     author = {A. I. Madunts},
     title = {Construction of convergence rings of a multidimensional complete field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Construction of convergence rings of a multidimensional complete field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 139
EP  - 146
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/
LA  - ru
ID  - ZNSL_2022_513_a9
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Construction of convergence rings of a multidimensional complete field
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 139-146
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/
%G ru
%F ZNSL_2022_513_a9
A. I. Madunts. Construction of convergence rings of a multidimensional complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 139-146. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a9/