Reverse decomposition of unipotents in polyvector representations
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 120-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper continues the series of papers devoted to the method of decomposition of unipotents and its numerous variations. For exterior square of the general linear group, which is a key particular case of exterior powers, the question of the reverse decomposition of unipotents was considered by the author (2021). A generalization of the obtained results to an arbitrary exterior power is discussed.
@article{ZNSL_2022_513_a8,
     author = {R. Lubkov},
     title = {Reverse decomposition of unipotents in polyvector representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--138},
     year = {2022},
     volume = {513},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a8/}
}
TY  - JOUR
AU  - R. Lubkov
TI  - Reverse decomposition of unipotents in polyvector representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 120
EP  - 138
VL  - 513
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a8/
LA  - ru
ID  - ZNSL_2022_513_a8
ER  - 
%0 Journal Article
%A R. Lubkov
%T Reverse decomposition of unipotents in polyvector representations
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 120-138
%V 513
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a8/
%G ru
%F ZNSL_2022_513_a8
R. Lubkov. Reverse decomposition of unipotents in polyvector representations. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 120-138. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a8/

[1] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO (2l,R)}$”, Zap. nauchn. semin. POMI, 272, 2000, 68–85 | MR

[2] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep (2l,R)}$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR

[3] N. A. Vavilov, E. Ya. Perelman, “Polivektornye predstavleniya $\mathrm{GL}_n$”, Zap. nauchn. semin. POMI, 338, 2006, 69–97

[4] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i Analiz, 19:5 (2007), 37–64

[5] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i Analiz, 19:2 (2007), 10–51 | MR

[6] N. A. Vavilov, V. G. Kazakevich, “Esche neskolko variatsii na temu razlozheniya transvektsii”, Zap. nauchn. semin. POMI, 375, 2010, 32–47

[7] R. A. Lubkov, I. I. Nekrasov, “Yavnye uravneniya na vneshnii kvadrat polnoi lineinoi gruppy”, Zap. nauchn. semin. POMI, 470, 2018, 120–137

[8] V. A. Petrov, “Razlozhenie transvektsii: algebro-geometricheskii podkhod”, Algebra i Analiz, 28:1 (2016), 150–157 | MR

[9] A. V. Stepanov, “Novyi vzglyad na razlozhenie unipotentov i normalnoe stroenie grupp Shevalle”, Algebra i Analiz, 28:3 (2016), 161–173

[10] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR

[11] R. Lubkov, “The reverse decomposition of unipotents for bivectors”, Comm. Algebra, 49:10 (2021), 4546–4556 | DOI | MR

[12] R. Lubkov, I. Nekrasov, “Overgroups of exterior powers of an elementary group. I. Levels and normalizers”, Linear and multilinear algebra, 2021 (to appear) , 20 pp.; arXiv: 1801.07918

[13] R. Lubkov, A. Stepanov, “Subgroups of Chevalley groups over rings”, Zap. nauchn. semin. POMI, 484, 2019, 121–137 | MR

[14] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR

[15] R. Preusser, “Structure of hyperbolic unitary groups II: Classification of E-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR

[16] R. Preusser, “Sandwich classification for $O_{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR

[17] R. Preusser, “Sandwich classification for ${\rm GL}_n(R)$, ${\rm O}_{2n}(R)$ and ${\rm U}_{2n}(R,\Lambda)$ revisited”, J. Group Theory, 21:1 (2018), 21–44 | DOI | MR

[18] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: Theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR

[19] N. A. Vavilov, “Decomposition of unipotents for $E_6$ and $E_7$: 25 years after”, Zap. nauchn. semin. POMI, 430, 2014, 32–52 | MR