Сonstruction for cyclic ferocious extensions of the Inaba equation
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 74-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a construction of cyclic ferocious extensions by Inaba equation. This gives a partial answer to the question on construction of cyclic extensions with small ramification depth. The construction is based on a method similar to that used by I. B. Zhukov and E. F. Lysenko (2017), and gives a tower of simple extensions with suitable ramification jumps.
@article{ZNSL_2022_513_a5,
     author = {O. Yu. Ivanova},
     title = {{\CYRS}onstruction for cyclic ferocious extensions of the {Inaba} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a5/}
}
TY  - JOUR
AU  - O. Yu. Ivanova
TI  - Сonstruction for cyclic ferocious extensions of the Inaba equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 74
EP  - 84
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a5/
LA  - ru
ID  - ZNSL_2022_513_a5
ER  - 
%0 Journal Article
%A O. Yu. Ivanova
%T Сonstruction for cyclic ferocious extensions of the Inaba equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 74-84
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a5/
%G ru
%F ZNSL_2022_513_a5
O. Yu. Ivanova. Сonstruction for cyclic ferocious extensions of the Inaba equation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 74-84. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a5/