On Inaba extensions for two-dimensional local fields of mixed characteristic
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 57-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to extensions of higher local fields determined by certain matrix equations introduced by E. Inaba. It is proved that any extension decomposable into a tower of Artin–Schreier extensions can be embedded into an Inaba extension that is a composite of the given extension and another Inaba extension. Next, any $p$-extension with elementary Abelian Galois group can be embedded into an extension with the Galois group isomorphic to a group of unipotent matrices over the field with $p$ elements.
@article{ZNSL_2022_513_a4,
     author = {I. B. Zhukov and O. Yu. Ivanova},
     title = {On {Inaba} extensions for two-dimensional local fields of mixed characteristic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--73},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/}
}
TY  - JOUR
AU  - I. B. Zhukov
AU  - O. Yu. Ivanova
TI  - On Inaba extensions for two-dimensional local fields of mixed characteristic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 57
EP  - 73
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/
LA  - ru
ID  - ZNSL_2022_513_a4
ER  - 
%0 Journal Article
%A I. B. Zhukov
%A O. Yu. Ivanova
%T On Inaba extensions for two-dimensional local fields of mixed characteristic
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 57-73
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/
%G ru
%F ZNSL_2022_513_a4
I. B. Zhukov; O. Yu. Ivanova. On Inaba extensions for two-dimensional local fields of mixed characteristic. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 57-73. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/