On Inaba extensions for two-dimensional local fields of mixed characteristic
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 57-73
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is devoted to extensions of higher local fields determined by certain matrix equations introduced by E. Inaba. It is proved that any extension decomposable into a tower of Artin–Schreier extensions can be embedded into an Inaba extension that is a composite of the given extension and another Inaba extension. Next, any $p$-extension with elementary Abelian Galois group can be embedded into an extension with the Galois group isomorphic to a group of unipotent matrices over the field with $p$ elements.
			
            
            
            
          
        
      @article{ZNSL_2022_513_a4,
     author = {I. B. Zhukov and O. Yu. Ivanova},
     title = {On {Inaba} extensions for two-dimensional local fields of mixed characteristic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--73},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/}
}
                      
                      
                    TY - JOUR AU - I. B. Zhukov AU - O. Yu. Ivanova TI - On Inaba extensions for two-dimensional local fields of mixed characteristic JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 57 EP - 73 VL - 513 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/ LA - ru ID - ZNSL_2022_513_a4 ER -
I. B. Zhukov; O. Yu. Ivanova. On Inaba extensions for two-dimensional local fields of mixed characteristic. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 57-73. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a4/