On an injective structure in a homotopy category
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 22-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Relative injective objects in some variant of a homotopy category are studied. For this, the relative homological algebra in preabelian categories is used.
@article{ZNSL_2022_513_a2,
     author = {A. I. Generalov and N. S. Zhamkov},
     title = {On an injective structure in a homotopy category},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a2/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - N. S. Zhamkov
TI  - On an injective structure in a homotopy category
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 22
EP  - 29
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a2/
LA  - ru
ID  - ZNSL_2022_513_a2
ER  - 
%0 Journal Article
%A A. I. Generalov
%A N. S. Zhamkov
%T On an injective structure in a homotopy category
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 22-29
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a2/
%G ru
%F ZNSL_2022_513_a2
A. I. Generalov; N. S. Zhamkov. On an injective structure in a homotopy category. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 22-29. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a2/