About one Galois embedding problem. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 218-227
Cet article a éte moissonné depuis la source Math-Net.Ru
For an odd prime $p$, the Galois embedding problem of an extension with elementary abelian $p$-group in an extension with the Galois group isomorphic to the group of unitriangular matrices over the finite field of order $p$ is considered. It is proved that the solvability of the maximal accompanying problem with central kernel of period $p$ is sufficient for the solvability of the original problem.
@article{ZNSL_2022_513_a13,
author = {A. V. Yakovlev},
title = {About one {Galois} embedding problem. {II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--227},
year = {2022},
volume = {513},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a13/}
}
A. V. Yakovlev. About one Galois embedding problem. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 218-227. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a13/
[1] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR
[2] A. Pal, E. Szabo, The strong Massey vanishing for fields with virtual cohomological dimension at most 1, 2020, arXiv: 1811.06192
[3] Y. Harpaz, O. Wittenberg, The Massey vanishing condition for number fields, 2019, arXiv: 1904.06512
[4] A. V. Yakovlev, “Ob odnoi zadache pogruzheniya”, Zapiski nauchn. semin. POMI, 500, 2021, 204–212