About one Galois embedding problem. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 218-227

Voir la notice de l'article provenant de la source Math-Net.Ru

For an odd prime $p$, the Galois embedding problem of an extension with elementary abelian $p$-group in an extension with the Galois group isomorphic to the group of unitriangular matrices over the finite field of order $p$ is considered. It is proved that the solvability of the maximal accompanying problem with central kernel of period $p$ is sufficient for the solvability of the original problem.
@article{ZNSL_2022_513_a13,
     author = {A. V. Yakovlev},
     title = {About one {Galois} embedding problem. {II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--227},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a13/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - About one Galois embedding problem. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 218
EP  - 227
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a13/
LA  - ru
ID  - ZNSL_2022_513_a13
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T About one Galois embedding problem. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 218-227
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a13/
%G ru
%F ZNSL_2022_513_a13
A. V. Yakovlev. About one Galois embedding problem. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 218-227. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a13/