Chow ring of horospherical varieties of Picard number one
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 147-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An algorithm based on Goresky–Kottwitz–MacPherson method is provided to compute the equivariant Chow ring of a horospherical variety of Picard number one. In the case of $G_2$-variety, an explicit presentation of this ring is given.
			
            
            
            
          
        
      @article{ZNSL_2022_513_a10,
     author = {V. A. Petrov and A. K. Sonina},
     title = {Chow ring of horospherical varieties of {Picard} number one},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/}
}
                      
                      
                    V. A. Petrov; A. K. Sonina. Chow ring of horospherical varieties of Picard number one. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 147-163. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/