Chow ring of horospherical varieties of Picard number one
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 147-163

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm based on Goresky–Kottwitz–MacPherson method is provided to compute the equivariant Chow ring of a horospherical variety of Picard number one. In the case of $G_2$-variety, an explicit presentation of this ring is given.
@article{ZNSL_2022_513_a10,
     author = {V. A. Petrov and A. K. Sonina},
     title = {Chow ring of horospherical varieties of {Picard} number one},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/}
}
TY  - JOUR
AU  - V. A. Petrov
AU  - A. K. Sonina
TI  - Chow ring of horospherical varieties of Picard number one
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 147
EP  - 163
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/
LA  - ru
ID  - ZNSL_2022_513_a10
ER  - 
%0 Journal Article
%A V. A. Petrov
%A A. K. Sonina
%T Chow ring of horospherical varieties of Picard number one
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 147-163
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/
%G ru
%F ZNSL_2022_513_a10
V. A. Petrov; A. K. Sonina. Chow ring of horospherical varieties of Picard number one. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 147-163. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/