Chow ring of horospherical varieties of Picard number one
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 147-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An algorithm based on Goresky–Kottwitz–MacPherson method is provided to compute the equivariant Chow ring of a horospherical variety of Picard number one. In the case of $G_2$-variety, an explicit presentation of this ring is given.
@article{ZNSL_2022_513_a10,
     author = {V. A. Petrov and A. K. Sonina},
     title = {Chow ring of horospherical varieties of {Picard} number one},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--163},
     year = {2022},
     volume = {513},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/}
}
TY  - JOUR
AU  - V. A. Petrov
AU  - A. K. Sonina
TI  - Chow ring of horospherical varieties of Picard number one
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 147
EP  - 163
VL  - 513
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/
LA  - ru
ID  - ZNSL_2022_513_a10
ER  - 
%0 Journal Article
%A V. A. Petrov
%A A. K. Sonina
%T Chow ring of horospherical varieties of Picard number one
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 147-163
%V 513
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/
%G ru
%F ZNSL_2022_513_a10
V. A. Petrov; A. K. Sonina. Chow ring of horospherical varieties of Picard number one. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 147-163. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a10/

[1] M. Brion, “Equivariant Chow groups for torus actions”, Transformation Groups, 2:3 (1997), 225–267 | DOI | MR

[2] D. Edidin and W. Graham, “Localization in equivariant intersection theory and the Bott residue formula”, Amer. J. Math., 120 (1998), 619–636 | DOI | MR

[3] W. Fulton, Intersection theory, Second edition, Springer-Verlag, Berlin, 1998 | MR

[4] R. Gonzales, C. Pech, N. Perrin, and A. Samokhin, Geometry of horospherical varieties of Picard rank one, IMRN, 2021 | MR

[5] M. Goresky, R. Kottwitz and R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. math., 131 (1998), 25–83 | DOI | MR

[6] B. Pasquier, “On some smooth projective two-orbit varieties with Picard number $1$”, Math. Ann., 344 (2009), 963–987 | DOI | MR

[7] B. Pasquier, L. Manivel, Horospherical two-orbit varieties as zero loci, Hal-Id: hal-03048217, 2020

[8] Julianna S. Tymoczko, Divided difference operators for partial flag varieties, 2009, arXiv: math/0912.2545v1