Relative decomposition of transvections: explicit bounds
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 9-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative associative ring with $1$, and let $G=\mathrm{GL}(n,R)$ be the general linear group of degree $n\ge 3$ over $R$. Further, let $I\unlhd R$ be an ideal of $R$. In the present note, which is a marginalia to the paper of Alexei Stepanov and the second named author(2000), we obtain explicit expressions of the elementary transvection $gt_{ij}(\xi)g^{-1}$, where $1\le i\neq j\le n$, $\xi\in I$ and $g\in G$, as products of the Stein–Tits–Vaserstein generators of the relative elementary group $E(n,R,I)$.
@article{ZNSL_2022_513_a1,
     author = {M. A. Buryakov and N. A. Vavilov},
     title = {Relative decomposition of transvections: explicit bounds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {513},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a1/}
}
TY  - JOUR
AU  - M. A. Buryakov
AU  - N. A. Vavilov
TI  - Relative decomposition of transvections: explicit bounds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 9
EP  - 21
VL  - 513
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a1/
LA  - en
ID  - ZNSL_2022_513_a1
ER  - 
%0 Journal Article
%A M. A. Buryakov
%A N. A. Vavilov
%T Relative decomposition of transvections: explicit bounds
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 9-21
%V 513
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a1/
%G en
%F ZNSL_2022_513_a1
M. A. Buryakov; N. A. Vavilov. Relative decomposition of transvections: explicit bounds. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 9-21. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a1/