@article{ZNSL_2022_513_a1,
author = {M. A. Buryakov and N. A. Vavilov},
title = {Relative decomposition of transvections: explicit bounds},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--21},
year = {2022},
volume = {513},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a1/}
}
M. A. Buryakov; N. A. Vavilov. Relative decomposition of transvections: explicit bounds. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 38, Tome 513 (2022), pp. 9-21. http://geodesic.mathdoc.fr/item/ZNSL_2022_513_a1/
[1] A. Bak, “Non-abelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, K–Theory, 4 (1991), 363–397 | DOI | MR
[2] A. Bak, N. A. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR
[3] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Publ. Math. Inst. Hautes Études Sci., 1964, no. 22, 5–60 | DOI | MR
[4] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ ($n\ge 3$) and $\mathrm{Sp}_{2n}$ ($n\ge 2)$”, Publ. Math. Inst. Hautes Études Sci., 33 (1967), 59–137 | DOI | MR
[5] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR
[6] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Springer, Berlin et al., 1989 | MR
[7] P. B. Gvozdevsky, Width of $\mathrm{SL}(n,{\mathcal O}_S,I)$, 2022, 16 pp., arXiv: 2206.11101v1 [math GR]
[8] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR
[9] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm{K}$-theory of rings (with an appendix by Max Karoubim)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR
[10] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR
[11] B. Kunyavskii, E. Plotkin, N. Vavilov, Bounded generation and commutator width of Chevalley groups: function case, 2022, 55 pp., arXiv: 2204.10951
[12] A. Lavrenov, “Another presentation for symplectic Steinberg groups”, J. Pure Appl. Algebra, 219:9 (2015), 3755–3780 | DOI | MR
[13] S. Sinchuk, A. Smolensky, “Decompositions of congruence subgroups of Chevalley groups”, Internat. J. Algebra Comput., 28:6 (2018), 935–958 | DOI | MR
[14] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm{K}$-Theory, 17 (1999), 295–302 | DOI | MR
[15] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR
[16] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR
[17] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm{K}$-Theory, 19:2 (2000), 109–153 | DOI | MR
[18] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR
[19] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI
[20] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér A, 283 (1976), 693–695 | MR
[21] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm{K}$-Theory (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR
[22] L. N. Vaserstein, Bounded reduction of invertible matrices over polynomial rings by addition operations, unpublished, 2006, 12p pp. http://www.personal.psu.edu/lxv1/pm2.pdf
[23] L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory”, Math. USSR Izv., 10 (1978), 937–1001 | DOI | MR
[24] N. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR
[25] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ., Ser. 1, 41:1 (2008), 5–8 | MR
[26] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR
[27] N. Vavilov, Z. Zhang, “Multiple commutators of elementary subgroups: end of the line”, Linear Algebra and Applications, 599 (2020), 1–17 | DOI | MR
[28] N. Vavilov, Z. Zhang, “Commutators of elementary subgroups: curiouser and curiouser”, Transformation Groups, 2021, 1–18 | DOI | MR