$B$-points of a Cantor-type set
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 148-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we study the behavior of the harmonic continuation $u$ to the upper half-plane for the characteristic function of a Cantor-type set $E$ of positive length, which is precisely the harmonic measure of such a set, near the boundary. We are interested in the description of points $x\in E$ (given in terms of their Cantor encoding) such that the mean variation of $u$ along $[x,x+i]$ – a certain weighted average of variations along $[x,x+t+i]$, $t\in\mathbb{R}$ – is finite.
@article{ZNSL_2022_512_a8,
     author = {P. A. Mozolyako},
     title = {$B$-points of a {Cantor-type} set},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--172},
     year = {2022},
     volume = {512},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a8/}
}
TY  - JOUR
AU  - P. A. Mozolyako
TI  - $B$-points of a Cantor-type set
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 148
EP  - 172
VL  - 512
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a8/
LA  - ru
ID  - ZNSL_2022_512_a8
ER  - 
%0 Journal Article
%A P. A. Mozolyako
%T $B$-points of a Cantor-type set
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 148-172
%V 512
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a8/
%G ru
%F ZNSL_2022_512_a8
P. A. Mozolyako. $B$-points of a Cantor-type set. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 148-172. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a8/

[1] P. A. Mozolyako, “Ob opredelenii tochek Burgeina borelevskogo zaryada na veschestvennoi pryamoi”, Zap. nauchn. sem. POMI, 389, 2011, 191–205

[2] J. Bourgain, “On the radial variation of bounded analytic functions on the disc”, Duke Math. J., 69:3 (1993), 671–682 | DOI | MR

[3] Zh. Burgein, “Ogranichennost variatsii svertok mer”, Matem. zametki, 54:4 (1993), 25–34 | MR

[4] A. Cantón, J. L. Fernández, D. Pestana, J. M. Rodríguez, “On harmonic functions on trees”, Potential Anal., 15:3 (2001), 199–244 | DOI | MR

[5] P. W. Jones, P. F. X. Müller, “Radial variation of Bloch functions”, Math. Res. Lett., 4:2–3 (1997), 395–400 | DOI | MR

[6] M. Holschneider, Ph. Tchamitchian, “Pointwise analysis of Riemann's “nondifferentiable”$~$ function”, Inventiones Mathematicae, 105:1 (1991), 159–175 | DOI | MR

[7] St. Petersburg Math. J., 28:3 (2017), 345–375 | DOI | MR

[8] P. F. X. Müller, K. Riegler, “Radial variation of Bloch functions on the unit ball of $\mathbb R^d$”, Ark. Mat., 58:1 (2020), 161–178 | DOI | MR

[9] M. D. O'Neill, “Vertical variation of harmonic functions in upper half spaces”, Colloq. Math., 87 (2001), 1–12 | DOI | MR

[10] W. Rudin, “The radial variation of analytic functions”, Duke Math. J., 22 (1955), 235–242 | DOI | MR

[11] W. Rudin, “Tauberian theorems for positive harmonic functions”, Nederl. Acad. Wetensch. Indig. Math., 40 (1978), 376–384 | DOI | MR