Conformal maps of a region that is geometrically close to a disk
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 116-147

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a Jordan domain differing from the unit disk in a finite number of domains of small diameter, and let $f$ be a conformal mapping of $D$ onto the unit disk. Under some additional assumptions, the deviation of $f$ from the identity mapping is estimated in explicit terms.
@article{ZNSL_2022_512_a7,
     author = {M. S. Kuznetsova and N. A. Shirokov},
     title = {Conformal maps of a region that is geometrically close to a disk},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--147},
     publisher = {mathdoc},
     volume = {512},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a7/}
}
TY  - JOUR
AU  - M. S. Kuznetsova
AU  - N. A. Shirokov
TI  - Conformal maps of a region that is geometrically close to a disk
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 116
EP  - 147
VL  - 512
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a7/
LA  - ru
ID  - ZNSL_2022_512_a7
ER  - 
%0 Journal Article
%A M. S. Kuznetsova
%A N. A. Shirokov
%T Conformal maps of a region that is geometrically close to a disk
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 116-147
%V 512
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a7/
%G ru
%F ZNSL_2022_512_a7
M. S. Kuznetsova; N. A. Shirokov. Conformal maps of a region that is geometrically close to a disk. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 116-147. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a7/