Conformal maps of a region that is geometrically close to a disk
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 116-147
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $D$ be a Jordan domain differing from the unit disk in a finite number of domains of small diameter, and let $f$ be a conformal mapping of $D$ onto the unit disk. Under some additional assumptions, the deviation of $f$ from the identity mapping is estimated in explicit terms.
@article{ZNSL_2022_512_a7,
author = {M. S. Kuznetsova and N. A. Shirokov},
title = {Conformal maps of a region that is geometrically close to a disk},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--147},
year = {2022},
volume = {512},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a7/}
}
M. S. Kuznetsova; N. A. Shirokov. Conformal maps of a region that is geometrically close to a disk. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 116-147. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a7/
[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] N. A. Shirokov, “Kolichestvennoe utochnenie teoremy Rado”, Zap. nauchn. sem. LOMI, 157, Izd-vo Nauka, Leningrad. otd., L., 1987, 103–112
[3] N. A. Shirokov, “O srednikh stepeni – $2$ proizvodnykh v klasse S”, Algebra i analiz, 28:6 (2016), 189–207
[4] I. I. Privalov, Granichnye svoistv analiticheskikh funktsii, Gos. izd-vo tekhniko-teoreticheskoi literatury, M.–L., 1950 | MR
[5] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Per. s angl. V. V. Krivova, Mir, M., 1969
[6] P. P. Belinskii, Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974